The general density matrixρabof the combined system may be parametrized as follows,
ρab=ρa⊗ρb+∑^3i,j=1Cijσia⊗σbj (16.55)whereCijis an arbitrary 3×3 real matrix. For any choice ofCij, we have
trHa(ρab) = ρb
trHb(ρab) = ρa (16.56)so that the reduced density matricesρa andρbare independent ofCij. Only forCij= 0 is the
density matrixρabthe tensor product ofρaandρb.
16.7.3 Lemma
For any two density operatorρandρ′in the same Hilbert spaceH, we have the inequality,
S(ρ)≤−kTr(
ρlnρ′)
(16.57)with equality being attained iffρ′=ρ.
To prove this, we write both density matrices in diagonal form, in orthonormal bases,ρ =∑i|φi〉pi〈φi|ρ′ =∑
i|φ′i〉p′i〈φ′i| (16.58)The bases|φi〉and|φ′i〉are in general different. We now consider
S(ρ) +kTr(
ρlnρ′)
= −k∑ipilnpi+k∑i,jpilnp′j|〈φi|φ′j〉|^2= k∑i,jpi(lnp′j−lnpi)|〈φi|φ′j〉|^2 (16.59)where we have used the completeness relation
∑
j|φ
′
j〉〈φ
′
j|=Iin recasting the simple sum on the
first line in the form of a double sum on the last line. Next, we introduce the function
f(x)≡x− 1 −lnx (16.60)We setx=p′j/piand recast the above double sum in the following way,
S(ρ) +kTr(
ρlnρ′)
=k∑i,jpi(
1 −p′j
pi−f(
p′j
pi))
|〈φi|φ′j〉|^2 (16.61)