QuantumPhysics.dvi
wang
(Wang)
#1
3.1.4 Finite-dimensional Hilbert spaces
All Hilbert spaces of finite dimensionNare isomorphic to one another. Let{|n〉}n=1,···,Nbe
an orthonormal basis in anN-dimensional Hilbert spaceH, satisfying〈m|n〉=δmn. Every
vector|φ〉inHmay be represented by a 1×N column matrix Φ whose matrix elements are
the complex numbersφn=〈n|φ〉,
|φ〉 ↔ Φ =
φ 1
φ 2
·
·
φN
〈φ| ↔ Φ†= (φ∗ 1 φ∗ 2 ··· φ∗N) (3.15)
The inner product of two vectors is given by matrix contraction,
(|ψ〉,|φ〉) =〈ψ|φ〉= Ψ†Φ =
∑N
n=1
ψn∗φn (3.16)
There is another combination that will be very useful,
|ψ〉〈φ| ↔ ΨΦ†=
ψ 1 φ∗ 1 ψ 1 φ∗ 2 ··· ψ 1 φ∗N
ψ 2 φ∗ 1 ψ 2 φ∗ 2 ··· ψ 2 φ∗N
···
ψNφ∗ 1 ψNφ∗ 2 ··· ψNφ∗N
(3.17)
Notice that a basis vector|m〉corresponds to a column matrix Φ whose entries areφn=δmn.
3.1.5 Infinite-dimensional Hilbert spaces
A infinite-dimensional Hilbert space Hin quantum physics will be separable and have a
countable orthonormal basis{|n〉}n∈N. All separable Hilbert spaces are isomorphic to one
another, but they may arise in different ways. An arbitrary vector|φ〉 ∈ Hmay be repre-
sented by the expansion,
|φ〉=
∑
n
cn|n〉 ||φ||^2 =
∑
n
|cn|^2 <∞ (3.18)
where the sum is understood to be overN. The simplest example of an infinite-dimensional
separable Hilbert space is given by,
L^2 ≡{c= (c 1 ,c 2 ,c 3 ,···); cn∈C} (c,d)≡
∑
n∈N
c∗ndn (3.19)