126 ENGINEERING THERMODYNAMICSdharm
M-therm/th4-2.pm5We have, Ql–q–m = (Um – Ul) + Wl–q–m
168 = (Um – Ul) + 64
∴ Um – Ul = 104 kJ. (Ans.)
(i) Ql–n–m = (Um – Ul) + Wl–n–m
= 104 + 21 = 125 kJ. (Ans.)
(ii) Qm–l = (Ul – Um) + Wm–l
= – 104 + (– 42) = – 146 kJ. (Ans.)
The system liberates 146 kJ.
(iii) Wl–n–m = Wl–n + Wn–m = Wl–m = 21 kJ
[Q Wn–m = 0, since volume does not change.]
∴ Ql–n = (Un – Ul) + Wl–n
= (84 – 0) + 21 = 105 kJ. (Ans.)
Now Ql–m–n = 125 kJ = Ql–n + Qn–m
∴ Qn–m = 125 – Ql–n
= 125 – 105 = 20 kJ. (Ans.)
Example 4.11. In a system, executing a non-flow process, the work and heat per degree
change of temperature are given by
dW
dT = 200 W-s/°C^ and^dQ
dT = 160 J/°C
What will be the change of internal energy of the system when its temperature changes
from
T 1 = 55 °C to T 2 = 95 °C?
Solution. Initial temperature, T 1 = 55°C ; Final temperature, T 2 = 95°C
dW
dT = 200 W-s/°C ;
dQ
dT = 160 J/°C.
Change of internal energy :
Now, dWdT = 200 W-s/°C∴ WdTT TTT
TT
===z 200 200 200
12125595= 200 (95 – 55) = 8000 W-s = 8000 J [Q 1 W-s = 1 J]Also, dQ
dT= 160 J/°C∴ QdTTTT
TT
==z 160 160
12
12= 160
5595
T = 160 (95 – 55) = 6400 JApplying the first law of thermodynamics to the given non-flow system,
Q = ∆ U + W