SECOND LAW OF THERMODYNAMICS AND ENTROPY 259dharm
/M-therm/th5-3.pm5s 1T 1T 2s 2 sQ2v = Const.T1= cv loge
p
p2
1+ (cv + R) loge
v
v2
1
= cv loge p
p2
1+ cp loge v
v2
1
∴ s 2 – s 1 = cv loge p
p2
1+ cp loge v
v2
1...(5.29)Again, from gas equation,
pv
Tpv
T11
122
2= or v
vp
pT
T2
11
22
1=×Putting the value of
v
v2
1in eqn. (5.28), we get(s 2 – s 1 ) = cv loge
T
T2
1+ R loge
p
pT
T1
22
1×= cv loge
T
T2
1+ R loge
p
p1
2+ R loge
T
T2
1
= (cv + R) loge
T
T2
1- R loge
p
p
2
1
= cp loge
T
T2
1- R loge
p
p
2
1
∴ s 2 – s 1 = cp loge T
T2
1- R loge p
p
2
1. ...(5.30)
5.17.2. Heating a gas at constant volume
Refer Fig. 5.25. Let 1 kg of gas be heated at
constant volume and let the change in entropy and
absolute temperature be from s 1 to s 2 and T 1 to T 2
respectively.
Then Q = cv(T 2 – T 1 )
Differentiating to find small increment of heat
dQ corresponding to small rise in temperature dT.
dQ = cvdT
Dividing both sides by T, we get
dQ
T = cv.
dT
T
or ds = cv. dT
T
Integrating both sides, we getds cdT
s Ts
v TT
12
12
zz=or s 2 – s 1 = cv loge
T
T2
1...(5.31) Fig. 5.25. T-s diagram : Constant
volume process