SECOND LAW OF THERMODYNAMICS AND ENTROPY 259
dharm
/M-therm/th5-3.pm5
s 1
T 1
T 2
s 2 s
Q
2
v = Const.
T
1
= cv loge
p
p
2
1
+ (cv + R) loge
v
v
2
1
= cv loge p
p
2
1
+ cp loge v
v
2
1
∴ s 2 – s 1 = cv loge p
p
2
1
+ cp loge v
v
2
1
...(5.29)
Again, from gas equation,
pv
T
pv
T
11
1
22
2
= or v
v
p
p
T
T
2
1
1
2
2
1
=×
Putting the value of
v
v
2
1
in eqn. (5.28), we get
(s 2 – s 1 ) = cv loge
T
T
2
1
+ R loge
p
p
T
T
1
2
2
1
×
= cv loge
T
T
2
1
+ R loge
p
p
1
2
+ R loge
T
T
2
1
= (cv + R) loge
T
T
2
1
- R loge
p
p
2
1
= cp loge
T
T
2
1
- R loge
p
p
2
1
∴ s 2 – s 1 = cp loge T
T
2
1
- R loge p
p
2
1
. ...(5.30)
5.17.2. Heating a gas at constant volume
Refer Fig. 5.25. Let 1 kg of gas be heated at
constant volume and let the change in entropy and
absolute temperature be from s 1 to s 2 and T 1 to T 2
respectively.
Then Q = cv(T 2 – T 1 )
Differentiating to find small increment of heat
dQ corresponding to small rise in temperature dT.
dQ = cvdT
Dividing both sides by T, we get
dQ
T = cv.
dT
T
or ds = cv. dT
T
Integrating both sides, we get
ds c
dT
s T
s
v T
T
1
2
1
2
zz=
or s 2 – s 1 = cv loge
T
T
2
1
...(5.31) Fig. 5.25. T-s diagram : Constant
volume process