TITLE.PM5

(Ann) #1
SECOND LAW OF THERMODYNAMICS AND ENTROPY 259

dharm
/M-therm/th5-3.pm5

s 1

T 1

T 2

s 2 s

Q

2

v = Const.

T

1

= cv loge
p
p

2
1

+ (cv + R) loge
v
v

2
1
= cv loge p
p

2
1

+ cp loge v
v

2
1
∴ s 2 – s 1 = cv loge p
p

2
1

+ cp loge v
v

2
1

...(5.29)

Again, from gas equation,
pv
T

pv
T

11
1

22
2

= or v
v

p
p

T
T

2
1

1
2

2
1


Putting the value of
v
v

2
1

in eqn. (5.28), we get

(s 2 – s 1 ) = cv loge
T
T

2
1

+ R loge
p
p

T
T

1
2

2
1

×

= cv loge
T
T

2
1

+ R loge
p
p

1
2

+ R loge
T
T

2
1
= (cv + R) loge
T
T

2
1


  • R loge
    p
    p


2
1
= cp loge
T
T

2
1


  • R loge
    p
    p


2
1
∴ s 2 – s 1 = cp loge T
T

2
1


  • R loge p
    p


2
1

. ...(5.30)


5.17.2. Heating a gas at constant volume

Refer Fig. 5.25. Let 1 kg of gas be heated at
constant volume and let the change in entropy and
absolute temperature be from s 1 to s 2 and T 1 to T 2
respectively.
Then Q = cv(T 2 – T 1 )
Differentiating to find small increment of heat
dQ corresponding to small rise in temperature dT.
dQ = cvdT
Dividing both sides by T, we get
dQ
T = cv.


dT
T
or ds = cv. dT
T
Integrating both sides, we get

ds c

dT
s T

s
v T

T
1

2
1

2
zz=

or s 2 – s 1 = cv loge
T
T

2
1

...(5.31) Fig. 5.25. T-s diagram : Constant
volume process
Free download pdf