272 ENGINEERING THERMODYNAMICS
dharm
/M-therm/th5-3.pm5
Characteristics gas constant,
R =
R
M
(^0) =^8314
44
= 189 Nm/kg K
To find T 2 , using the relation,
p 2 V 2 = mRT 2
∴ T 2 =
pV
mR
(^22) = 9 10 0 003
0 04 189
××^5
×
.
. = 357 K
Now sA – s 2 = R loge
p
p
2
1
=
189
103
loge 9
1
F
HG
I
KJ
= 0.4153 kJ/kg K
Also at constant pressure from 1 to A
sA – s 1 = cp loge
T
T
2
1
= 0.88 loge 357
293
F
HG
I
KJ
= 0.1738 kJ/kg K
Then (s 1 – s 2 ) = (sA – s 2 ) – (sA – s 1 )
= 0.4153 – 0.1738 = 0.2415 kJ/kg K
Hence for 0.04 kg of carbon dioxide decrease in entropy,
S 1 – S 2 = m(s 1 – s 2 ) = 0.04 × 0.2415
= 0.00966 kJ/K. (Ans.)
Note. In short, the change of entropy can be found by using the following relation :
(s 2 – s 1 ) = cp loge T
T
2
1
- R loge p
p
2
1
= 0.88 loge 357
293
189
103
F
HG
I
KJ
− loge
9
1
F
HG
I
KJ
= 0.1738 – 0.4153 = – 0.2415 kJ/kg K
∴ S 2 – S 1 = m(s 2 – s 1 ) = 0.04 × (– 0.2415)
= – 0.00966 kJ/K
(– ve sign means decrease in entropy)
or S 1 – S 2 = 0.00966 kJ/K.
Example 5.27. Calculate the change of entropy of 1 kg of air expanding polytropically in a
cylinder behind a piston from 7 bar and 600°C to 1.05 bar. The index of expansion is 1.25.
Solution. The process is shown on a T-s diagram in Fig. 5.35.
Initial pressure, p 1 = 7 bar = 7 × 10^5 N/m^2
Initial temperature, T 1 = 600 + 273 = 873 K
Final pressure, p 2 = 1.05 bar = 1.05 × 10^5 N/m^2
Index of expansion, n = 1.25
Mass of air = 1 kg
To find T 2 , using the relation,
T
T
2
1
= p
p
n
2 n
1
1
F
HG
I
KJ
−
∴ T^2
873
= 1.05
7
125 1
F 125
HG
I
KJ
. −
.