TITLE.PM5

(Ann) #1
SECOND LAW OF THERMODYNAMICS AND ENTROPY 279

dharm
/M-therm/th5-4.pm5

Example 5.32. A rigid cylinder containing 0.004 m^3 of nitrogen at 1 bar and 300 K is
heated reversibly until temperature becomes 400 K. Determine :
(i)The heat supplied. (ii)The entropy change.
Assume nitrogen to be perfect gas (molecular mass = 28) and take γ = 1.4.
Solution. Given : V 1 = 0.004 m^3 ; p 1 = 1 bar ; T 1 = 300 K ; T 2 = 400 K ; M for N 2 = 28 ;
γ = 1.4.
(i)The heat supplied :
Gas constant R = R
M

0 8 314
28

(
(

Universal gas constant).
Molecular mass)

= = 0.297 kg/kg K

Mass, m = pV
RT

11
1

1 10^5 0 004
0 297 1000 300
= ××
××

().
(. )
= 0.00449 kg

cv = R
γ−

=
1 −

0 297
14 1

.
.

= 0.742 kJ/kg K
∴ Heat supplied = m cv(T 2 – T 1 )
= 0.00449 × 0.742(400 – 300) = 0.333 kJ. (Ans.)
(ii)The entropy change :

The entropy change, S 2 – S 1 = m cv loge T
T

2
1

F
HG

I
KJ

= 0.00449 × 0.742 × loge 400
300

F
HG

I
KJ = 9.584 × 10

–4 kJ/kg K. (Ans.)

Example 5.33. A piston-cylinder arrangement contains 0.05 m^3 of nitrogen at 1 bar and
280 K. The piston moves inwards and the gas is compressed isothermally and reversibly until the
pressure becomes 5 bar. Determine :
(i)Change in entropy. (ii)Work done.
Assume nitrogen to be a perfect gas.
Solution. Given : V 1 = 0.05 m^3 ; p 1 = 1 bar ; T 1 = 280 K ; p 2 = 5 bar.
(i)Change in entropy, (S 2 – S 1 ) :
Gas constant, R = R
M


0 8 314
28
=. = 0.297 kJ/kg K

Mass of the gas, m = pV
RT

11
1

110 005^5
0 297 1000 280

= ××
××

().
(. )

= 0.06 kg

∴ Change in entropy S 2 – S 1 = mR loge
p
p

1
2

F
HG

I
KJ

= 0.06 × 0.297 loge
1
5

F
HG

I
KJ = – 0.0287 kJ/K. (Ans.)
Heat interaction, Q = T(S 2 – S 1 )
= 280 × (– 0.0287) = – 8.036 kJ
∴ Work done, W = Q = – 8.036 kJ. (Ans.) (Q In its other process, W = Q)

Alternatively W p V V
V
pV p
eep

e

:

kJ = 8.04 kJ

=
F
HG

I
KJ

=
F
HG

I
KJ
=× × × F
HG

I
KJ×

L


N


M
M
M
M

O


Q


P
P
P
P

11 2
1
11 1
2
110 005^531
5
10

log log

.log
Free download pdf