THERMODYNAMIC RELATIONS 359dharm
\M-therm\Th7-1.pm5
Substituting this value in eqn. (3), we get(dh)T = vp
v Tp
TvT∂
∂F
HI
K +∂
∂F
HI
KL
N
MO
Q
P dv ...(4)8.7. Van der Waal’s Equation
∂
∂F
HI
Kp
vT =∂
∂−F
HI
K−L
NMO
v QPRT
vba
v^2 T= – ()vbRT− 23 +^2 va ...(5)∂
∂F
HI
Kp
T v =∂
∂−F −
HGI
KJL
NM
MO
QP
T PRT
vba
v^2 v= vbR− ...(6)Substituting the values of eqns. (5) and (6) in equation (1), we get(dh)T = v RT
vba
vT R
vb
−
−+
R
S
TU
V
W+
−F
HGI
KJL
NM
MO
QP
()^23 P(^2) dv
∴ ()dhT
1
2
z = – RT^
v
z (^1) ()vb− 2
2
dv + 2a
dv
(^1) v^2
2
z + RT^
dv
z 1 ()vb−
2
∴ (h 2 – h 1 )T = – RT loge vbvb^2 b vbvb
121
− 11
−
F
HG
I
KJ
− RS − − −
T
U
V
W
L
N
M
O
Q
P
- 2a 11
21
2
vv 1
− RT e vbvb
F
HGI
KJ
+ −−
F
HGI
KJ
log= bRT (^) (v^1 b) (v^1 b)
21 −
L − −
NM
O
QP
- 2a 1
v
1
21 v−
L
NM
O
QP. (Ans.)
(iii)Change in entropy :
The change in entropy is given by
ds = cp dTT Tp
v+FH∂∂ IK. dv
For Van der Waals equation,
∂
∂F
HI
K = −p
TR
v vb ...as per eqn. (6)
∴ ds = cv dTT +vbR− dv∴ ds
12
z = cv^dT
TR dv
vbL
NMO
QP+
zz 1 ()−2
12∴ s 2 – s 1 = cv loge T
T2
1L
NM
O
QP + R loge^
vb
vb2
1−
−L
NM
O
QP. (Ans.)
Example 7.6. The equation of state in the given range of pressure and temperature is
given by
v =
RT
pC
T− 3
where C is constant.
Derive an expression for change of enthalpy and entropy for this substance during an
isothermal process.