THERMODYNAMIC RELATIONS 365
dharm
\M-therm\Th7-2.pm5
Now substituting this in eqn. (i), we get
ds = cp
dT
T
s
T p
−F
HG
I
KJ
∂
∂
. dp ...(ii)
But β =^1 v Tv
p
∂
∂
F
H
I
K
Substituting this in eqn. (ii), we get
ds = cp dTT – βvdp (Ans.)
Example 7.11. Derive the following relations :
(i)HF∂∂TpIK
s
= Tvc
p
β (ii) ∂
∂
F
H
I
K
T
v s = –
T
cKv
β.
where β = Co-efficient of cubical expansion, and
K = Isothermal compressibility.
Solution. (i) Using the Maxwell relation (7.19), we have
∂
∂
F
H
I
K
T
p s =
∂
∂
F
H
I
K
v
s p =
∂
∂
F
H
I
K
∂
∂
F
H
I
K
v
T
T
p s p
Also cp = T (^) HF∂∂TsIK
p
From eqn. (7.34), β =^1
v
v
T p
∂
∂
F
H
I
K
∂
∂
F
H
I
K =
T
p
vT
s cp
β
i.e., ∂
∂
F
H
I
K =
T
p
Tv
s cp
β. (Ans.)
(ii) Using the Maxwell relation (7.18)
∂
∂
F
H
I
K
T
v s = –
∂
∂
F
H
I
K
p
sv = –
∂
∂
F
H
I
K
∂
∂
F
H
I
K
p
T
T
vvs
Also cv = T (^) HF∂∂TsIK
v
(Eqn. 7.23)
K = –^1 v vp
T
∂
∂
F
H
I
K
(Eqn. 7.36)
Then FH∂∂TvIK
s
= – Tc Tp
v v
∂
∂
F
H
I
K
Also FH∂∂pvIK FH∂∂TvIKHF∂∂TpIK
T p v
= – 1
i.e., FH∂∂TpIK
v
= – ∂
∂
F
H
I
K
∂
∂
F
H
I
K
p
v
v
T T p
= – HF−^1 vKKIβv = Kβ