TITLE.PM5

(Ann) #1
THERMODYNAMIC RELATIONS 365

dharm
\M-therm\Th7-2.pm5


Now substituting this in eqn. (i), we get

ds = cp
dT
T

s
T p

−F
HG

I
KJ



. dp ...(ii)


But β =^1 v Tv
p



F
H

I
K
Substituting this in eqn. (ii), we get

ds = cp dTT – βvdp (Ans.)

Example 7.11. Derive the following relations :

(i)HF∂∂TpIK
s

= Tvc
p

β (ii) ∂

F
H

I
K

T
v s = –

T
cKv

β.

where β = Co-efficient of cubical expansion, and
K = Isothermal compressibility.
Solution. (i) Using the Maxwell relation (7.19), we have


F
H

I
K

T
p s =



F
H

I
K

v
s p =



F
H

I
K



F
H

I
K

v
T

T
p s p

Also cp = T (^) HF∂∂TsIK
p
From eqn. (7.34), β =^1
v
v
T p


F
H
I
K


F
H
I
K =
T
p
vT
s cp
β
i.e., ∂

F
H
I
K =
T
p
Tv
s cp
β. (Ans.)
(ii) Using the Maxwell relation (7.18)


F
H
I
K
T
v s = –


F
H
I
K
p
sv = –


F
H
I
K


F
H
I
K
p
T
T
vvs
Also cv = T (^) HF∂∂TsIK
v
(Eqn. 7.23)
K = –^1 v vp
T


F
H
I
K
(Eqn. 7.36)
Then FH∂∂TvIK
s
= – Tc Tp
v v


F
H
I
K
Also FH∂∂pvIK FH∂∂TvIKHF∂∂TpIK
T p v
= – 1
i.e., FH∂∂TpIK
v
= – ∂

F
H
I
K


F
H
I
K
p
v
v
T T p
= – HF−^1 vKKIβv = Kβ

Free download pdf