610 ENGINEERING THERMODYNAMICS
dharm
\M-therm\Th13-1.pm5
p 3 = p 2 × V
V
2
3
F
HG
I
KJ
γ
= 12 × V
V
1
4
F
HG
I
KJ
γ
Q V
V
V
V
4
1
3
2
=
L
N
M
O
Q
P
= 12 ×^1
6
F^14
HG
I
KJ
.
= 0.97 bar. (Ans.)
Hence
pTT
p
pTT
p
112
2
334
4
===
=
===
=
U
V
||
W
||
18 bar
12 bar
0.97 bar
1.46 bar
(Ans. )
683 K
333.2 K
(ii)Change in entropy :
Change in entropy during isothermal expansion,
S 2 – S 1 = mR loge
V
V
2
1
F
HG
I
KJ
=
pV
T
11
1
loge
V
V
2
1
F
HG
I
KJ
Q pV mRT
mR pV
T
=
=
L
N
M
M
O
Q
P
or P
=
18 10 018
10 683
5
3
××
×
.
loge (1.5) = 0.192 kJ/K. (Ans.)
(iii)Mean thermal efficiency of the cycle :
Heat supplied, Qs = p 1 V 1 loge
V
V
2
1
F
HG
I
KJ
= T 1 (S 2 – S 1 )
= 683 × 0.192 = 131.1 kJ
Heat rejected, Qr = p 4 V 4 loge
V
V
3
4
F
HG
I
KJ
= T 4 (S 3 – S 4 ) because increase in entropy during heat addition
is equal to decrease in entropy during heat rejection.
∴ Qr = 333.2 × 0.192 = 63.97 kJ
∴ Efficiency, η =
QQ
Q
sr
s
−
= 1 –
Q
Q
r
s
= 1 –
63.97
131.1
= 0.512 or 51.2%. (Ans.)
(iv)Mean effective pressure of the cycle, pm :
The mean effective pressure of the cycle is given by
pm = Work done per cycle
Stroke volume
V
V
3
1
= 6 × 1.5 = 9
Stroke volume, Vs = V 3 – V 1 = 9V 1 – V 1 = 8V 1 = 8 × 0.18 = 1.44 m^3
∴ pm = ()QQ J
V
sr
s
−× = ()QQ
V
sr
s
−× (^1) ()Q J= 1
= ()131.1 63.97^10
44 10
3
5
−×
- ×
= 0.466 bar. (Ans.)