684 ENGINEERING THERMODYNAMICS
dharm
\M-therm\Th13-6.pm5
or, T 22 = T 1 T 3 or T 2 = TT 13
or, T 2 = 303 1073× = 570.2 K
Now, Wturbine – Wcompressor = m&f × C × η
or, 100 = m&f × 45000 ×^1
41
32
− −
−
L
N
M
O
Q
P
TT
TT
= m&f × 45000^1
570.2 303
1073 570
− −
−
L
N
M
O
Q
.2P
= m&f × 21085.9
or, m&f =
100
21085.9 = 4.74 × 10
–3 kg/s. (Ans.)
Again, Wturbine – Wcompressor = 100 kW
(mmTT m&&af+−−××−=)( 34 ) &a 1 ()TT 21100
or, (m&a+ 0.00474)(1073 – 570.2) – m&a(570.2 – 303) = 100
or, (m&a+ 0.00474) × 502.8 – 267.2 m&a = 100
or, 502.8 m&a + 2.383 – 267.2 m&a = 100
or, 235.6 m&a = 97.617
∴ m&a = 0.414 kg/s. (Ans.)
Example 13.37. In a gas turbine plant working on Brayton cycle, the air at inlet is 27°C,
0.1 MPa. The pressure ratio is 6.25 and the maximum temperature is 800°C. The turbine and
compressor efficiencies are each 80%. Find compressor work, turbine work, heat supplied, cycle
efficiency and turbine exhaust temperature. Mass of air may be considered as 1 kg. Draw T-s
diagram. (N.U.)
Solution. Refer to Fig. 13.56.
T
s
2
1
2 ′
3
4
4 ′
T-s diagram
Fig. 13.56
Given : T 1 = 27 + 273 = 300 K ; p 1 = 0.1 MPa ; rp = 6.25, T 3 = 800 + 273 = 1073 K ;
ηcomp. = ηturbine = 0.8.