TITLE.PM5

(Ann) #1
GAS POWER CYCLES 695

dharm
\M-therm\Th13-6.pm5

∴ T 2 ′ =
502.5 288
0.82



  • 288 = 549.6 K
    Wcompressor = cpa(T 2 ′ – T 1 ) = 1.005 × (549.6 – 288) = 262.9 kJ/kg
    Now, the work output of H.P. turbine = Work input to compressor
    ∴ cpg(T 3 – T 4 ′) = 262.9
    i.e., 1.15(883 – T 4 ′) = 262.9


∴ T 4 ′ = 883 – 262.9
1.15
= 654.4 K

i.e., Temperature of gases entering the power turbine = 654.4 K. (Ans.)
Again, for H.P. turbine :


ηturbine =

TT
TT

34
34

−′

i.e., 0.85 =

883 654 4

(^8834)


.
T
∴ T 4 = 883 –
883 654.4
0.85
F −
HG
I
KJ = 614 K
Now, considering isentropic expansion process 3-4,
T
T
p
p
3
4
3
4
1


F
HG
I
KJ
−γ
γ
or p
p
T
T
3
4
3
4
1
133
883 033
614


F
HG
I
KJ
=F
HG
I
KJ

γ
γ
.


. = 4.32


i.e., p 4 =


p 3
432

707

. 432


.
.
= = 1.636 bar
i.e., Pressure of gases entering the power turbine = 1.636 bar. (Ans.)
(ii)Net power developed per kg/s mass flow, P :
To find the power output it is now necessary to calculate T 5 ′.

The pressure ratio,

p
p

4
5

, is given by

p
p

p
p

4
3

3
5

×

i.e.,

p
p

p
p

p
p

4
5

4
3

2
1

=× (Q p 2 = p 3 and p 5 = p 1 )

=^7


  1. = 1.62


Then, T
T

p
p

4
5

4
5

(^1033)
′=F 62 33
HG
I
KJ


−γ
γ
()
.





    1. 1.127




∴ T 5 = T^4
127

654 4
127

′ =




    1. . = 580.6 K.



Free download pdf