GAS POWER CYCLES 695
dharm
\M-therm\Th13-6.pm5
∴ T 2 ′ =
502.5 288
0.82
−
- 288 = 549.6 K
Wcompressor = cpa(T 2 ′ – T 1 ) = 1.005 × (549.6 – 288) = 262.9 kJ/kg
Now, the work output of H.P. turbine = Work input to compressor
∴ cpg(T 3 – T 4 ′) = 262.9
i.e., 1.15(883 – T 4 ′) = 262.9
∴ T 4 ′ = 883 – 262.9
1.15
= 654.4 K
i.e., Temperature of gases entering the power turbine = 654.4 K. (Ans.)
Again, for H.P. turbine :
ηturbine =
TT
TT
34
34
−′
−
i.e., 0.85 =
883 654 4
(^8834)
−
−
.
T
∴ T 4 = 883 –
883 654.4
0.85
F −
HG
I
KJ = 614 K
Now, considering isentropic expansion process 3-4,
T
T
p
p
3
4
3
4
1
F
HG
I
KJ
−γ
γ
or p
p
T
T
3
4
3
4
1
133
883 033
614
F
HG
I
KJ
=F
HG
I
KJ
−
γ
γ
.
. = 4.32
i.e., p 4 =
p 3
432
707
. 432
.
.
= = 1.636 bar
i.e., Pressure of gases entering the power turbine = 1.636 bar. (Ans.)
(ii)Net power developed per kg/s mass flow, P :
To find the power output it is now necessary to calculate T 5 ′.
The pressure ratio,
p
p
4
5
, is given by
p
p
p
p
4
3
3
5
×
i.e.,
p
p
p
p
p
p
4
5
4
3
2
1
=× (Q p 2 = p 3 and p 5 = p 1 )
=^7
- = 1.62
Then, T
T
p
p
4
5
4
5
(^1033)
′=F 62 33
HG
I
KJ
−γ
γ
()
.
- 1.127
∴ T 5 = T^4
127
654 4
127
′ =
- . = 580.6 K.