GAS POWER CYCLES 705
dharm
\M-therm\Th13-6.pm5
As per given conditions :T 1 = T 3 , T 2 ′ = T 4 ′
T
T
p
p
2
1
2
1
1
=
F
HG
I
KJ
−γ
γ
and px = pp 12 =×1. 56 = 3 bar
Now, T 2 = T 1 × p
T
2
1
1
F
HG
I
KJ
−γ
γ
= 293 ×^3
5
14 1
14
1.
F
HG
I
KJ
. −
. = 357 K
ηcompressor (L.P.) =
TT
TT
21
21
−
′−
0.82 =
357 293
2 293
−
T′−
∴ T 2 ′ = 357 293
082
−
.
+ 293 = 371 K
i.e., T 2 ′ = T 4 ′ = 371 K
Now, T
T
p
p
p
px
5
6
5
6
1
2
11
1
=
F
HG
I
KJ
=
F
HG
I
KJ
γ−−
γ
.4
.4 Q pp
ppx
52
6
=
=
L
N
M
O
Q
P
1023 6
3
219
6
0286
T
=F
HG
I
KJ
=
.
1.
∴ T 6 =
1023
1 219. = 839 K
ηturbine (H.P.) =
TT
TT
56
56
−′
−
0.82 =
1023
1023 839
−′ 6
−
T
∴ T 6 ′ = 1023 – 0.82 (1023 – 839) = 872 K
T 8 ′ = T 6 ′ = 872 K as ηturbine (H.P.) = ηturbine (L.P.)
and T 7 = T 5 = 1023 K
Effectiveness of regenerator, ε =
TT
TT
′− ′
′− ′
4
84
where T′ is the temperature of air coming out of regenerator
∴ 0.70 =
T′−
−
371
872 371 i.e., T′ = 0.70 (872 – 371) + 371 = 722 K
Net work available, Wnet = [WT(L.P.) + WT(L.P.)] – [WC(H.P.) + WC(L.P.)]
= 2 [WT(L.P.) – WC(L.P.)] as the work developed by each turbine is
same and work absorbed by each compressor is same.
∴ Wnet = 2cp [(T 5 – T 6 ′) – (T 2 ′ – T 1 )]
= 2 × 1.005 [(1023 – 872) – (371 – 293)] = 146.73 kJ/kg of air
Heat supplied per kg of air without regenerator
= cp(T 5 – T 4 ′) + cp(T 7 – T 6 ′)
= 1.005 [(1023 – 371) + (1023 – 872)] = 807 kJ/kg of air