GAS POWER CYCLES 705
dharm
\M-therm\Th13-6.pm5
As per given conditions :T 1 = T 3 , T 2 ′ = T 4 ′T
Tp
p2
12
11
=
F
HGI
KJ−γ
γ
and px = pp 12 =×1. 56 = 3 barNow, T 2 = T 1 × p
T2
11
F
HGI
KJ−γ
γ
= 293 ×^3
514 1
14
1.F
HGI
KJ. −
. = 357 K
ηcompressor (L.P.) =TT
TT21
21−
′−0.82 =357 293
2 293−
T′−∴ T 2 ′ = 357 293
082−
.
+ 293 = 371 Ki.e., T 2 ′ = T 4 ′ = 371 K
Now, T
Tp
pp
px5
65
61
211
1
=
F
HGI
KJ=
F
HGI
KJγ−−
γ.4
.4 Q pp
ppx52
6=
=L
NM
O
QP
1023 6
3219
60286
T=F
HGI
KJ
=.
1.∴ T 6 =1023
1 219. = 839 Kηturbine (H.P.) =
TT
TT56
56−′
−0.82 =1023
1023 839−′ 6
−T∴ T 6 ′ = 1023 – 0.82 (1023 – 839) = 872 K
T 8 ′ = T 6 ′ = 872 K as ηturbine (H.P.) = ηturbine (L.P.)
and T 7 = T 5 = 1023 K
Effectiveness of regenerator, ε =
TT
TT′− ′
′− ′4
84
where T′ is the temperature of air coming out of regenerator
∴ 0.70 =T′−
−371
872 371 i.e., T′ = 0.70 (872 – 371) + 371 = 722 K
Net work available, Wnet = [WT(L.P.) + WT(L.P.)] – [WC(H.P.) + WC(L.P.)]
= 2 [WT(L.P.) – WC(L.P.)] as the work developed by each turbine is
same and work absorbed by each compressor is same.
∴ Wnet = 2cp [(T 5 – T 6 ′) – (T 2 ′ – T 1 )]
= 2 × 1.005 [(1023 – 872) – (371 – 293)] = 146.73 kJ/kg of air
Heat supplied per kg of air without regenerator
= cp(T 5 – T 4 ′) + cp(T 7 – T 6 ′)
= 1.005 [(1023 – 371) + (1023 – 872)] = 807 kJ/kg of air