TITLE.PM5

(Ann) #1

GAS POWER CYCLES 705


dharm
\M-therm\Th13-6.pm5


As per given conditions :T 1 = T 3 , T 2 ′ = T 4 ′

T
T

p
p

2
1

2
1

1
=
F
HG

I
KJ

−γ
γ
and px = pp 12 =×1. 56 = 3 bar

Now, T 2 = T 1 × p
T

2
1

1
F
HG

I
KJ

−γ
γ
= 293 ×^3
5

14 1
14
1.

F
HG

I
KJ

. −
. = 357 K


ηcompressor (L.P.) =

TT
TT

21
21


′−

0.82 =

357 293
2 293


T′−

∴ T 2 ′ = 357 293
082


.
+ 293 = 371 K

i.e., T 2 ′ = T 4 ′ = 371 K


Now, T
T

p
p

p
px

5
6

5
6

1
2

11
1
=
F
HG

I
KJ

=
F
HG

I
KJ

γ−−
γ

.4
.4 Q pp
ppx

52
6

=
=

L
N

M


O
Q

P


1023 6
3

219
6

0286
T

=F
HG

I
KJ
=

.
1.

∴ T 6 =

1023
1 219. = 839 K

ηturbine (H.P.) =
TT
TT

56
56

−′

0.82 =

1023
1023 839

−′ 6

T

∴ T 6 ′ = 1023 – 0.82 (1023 – 839) = 872 K
T 8 ′ = T 6 ′ = 872 K as ηturbine (H.P.) = ηturbine (L.P.)
and T 7 = T 5 = 1023 K


Effectiveness of regenerator, ε =
TT
TT

′− ′
′− ′

4
84
where T′ is the temperature of air coming out of regenerator


∴ 0.70 =

T′−

371
872 371 i.e., T′ = 0.70 (872 – 371) + 371 = 722 K
Net work available, Wnet = [WT(L.P.) + WT(L.P.)] – [WC(H.P.) + WC(L.P.)]
= 2 [WT(L.P.) – WC(L.P.)] as the work developed by each turbine is
same and work absorbed by each compressor is same.
∴ Wnet = 2cp [(T 5 – T 6 ′) – (T 2 ′ – T 1 )]
= 2 × 1.005 [(1023 – 872) – (371 – 293)] = 146.73 kJ/kg of air
Heat supplied per kg of air without regenerator
= cp(T 5 – T 4 ′) + cp(T 7 – T 6 ′)
= 1.005 [(1023 – 371) + (1023 – 872)] = 807 kJ/kg of air

Free download pdf