HEAT TRANSFER 805dharm
\M-therm\Th15-2.pm50.989 L × 10^3 =
2 150 20
1
100 0 06008 006
42008
081
303
3πL
r
r().ln(. /. ) ln( /. )
.−×
+++
×L
NM
O
QP
0.989 × 10^3 =816 81
0 16666 0 00685^008
081
303
3.
..ln ( /. )
.
++ +
L
NM
O
QP
r
r
or ln ( /. )
..
.r
r3
3 3008
081
30816 81
0 989 10+=
×- (0.16666 + 0.00685) = 0.6524
 
or 1.25 ln (r 3 /0.08) +
1
30 r 3- 0.6524 = 0
Solving by hit and trial, we get
r 3 ~− 0.105 m or 105 mm
∴ Thickness of insulation = r 3 – r 2 = 105 – 80 = 25 mm. (Ans.) 
15.2.8. Heat conduction through hollow and composite spheres
15.2.8.1. Heat conduction through hollow sphere
Refer Fig. 15.22. Consider a hollow
sphere made of material having constant ther-
mal conductivity.
Let r 1 , r 2 = Inner and outer radii,
t 1 , t 2 = Temperature of inner and
outer surfaces, and
k = Constant thermal conductiv-
ity of the material with the
given temperature range.
Consider a small element of thickness
dr at any radius r.
Area through which the heat is trans-
mitted, A = 4πr^2
∴ Q = – k. 4πr^2. dt
dr
Rearranging and integrating the above
equation, we obtain
Q dr
r rr
1 22
z = – 4πk^ tdtt
12
zor Qr
r−+ r
−+L
NM
MO
QP
P21
21
12
= – 4πk t
tL t
NM
O
QP
12or – Q
11
rr 21
−F
HGI
KJ= – 4πk(t 2 – t 1 )or
Qr r
rr() 21
12−
= 4πk (t 1 – t 2 )or Q =
4412 1 2
2112
21
12ππkr r t t
rrtt
rr
kr r()
() ()
()−
−= −
L −
N
MO
Q
P...(15.37)Fig. 15.22. Steady state conduction
through a hollow sphere.Q t 1 t 2R=th 4k rrr– r2 1
π 12Qdr
ElementHollow spheret 2Q (Heat flows radially
outwards, t > t ) 12r 2rr (^1) t 1