dharm
\M-therm\Th15-3.pm5
824 ENGINEERING THERMODYNAMICS
Cold
Cold
Hot
Annulus
surrounding
the pipe
Pipe
( ) Flow arrangement.a
dA
Area
th 1
th 2
tc 1
tc 2
q
dtc
dth
th
q 2
( ) Temperature distribution.b
dQ
tc
q 1
Hot fluid
Cold fluid
Fig. 15.39. Calculation of LMTD for a counter-flow heat exchanger.
or dθ = – dQ
11
CChc
−
L
N
M
O
Q
P ...(15.57)
Inserting the value of dQ from eqn. (15.55), we get
dθ = – U dA (th – tc)^11
CChc
−
L
N
M
O
Q
P
= – U dA. θ
11
CChc
−
L
N
M
O
Q
P
or dθ
θ
= – U dA
11
CChc
−
L
N
M
O
Q
P
Integrating the above equation from A = 0 to A = A, we get
ln (θ 2 /θ 1 ) = – U. A
11
CChc
−
L
N
M
O
Q
P ...(15.58)
Now, the total heat transfer rate between the two fluids is given by
θ = Ch (–) (–)tt Ctthh cc c 12 = 21 ...(15.59)
or
(^112)
C
tt
h Q
= hh−
...[15.60 (a)]
or
(^121)
C
tt
c Q
= cc−
...[15.60 (b)]