dharm
\M-therm\Th15-3.pm5
826 ENGINEERING THERMODYNAMICS
Solution. Given : m&h = 0.2 kg/s ; m&c = 0.5 kg/s ; th 1 = 75°C ;
th 2 = 45°C ; tc 1 = 20°C ; hi = h 0 = 650 W/m^2 °C.
The area of heat exchanger, A :
The heat exchanger is shown diagrammatically in Fig. 15.40.
The heat transfer rate, Q = mh × cph × (–)tthh 12
= 0.2 × 4.187 × (75 – 45) = 25.122 kJ/s
Cold water
Cold water
Hot water
( ) Flow arrangement.a
t = 20 Cc 1 º
t = 75 Ch 1 º 45 C (t )º h 2
t = 20 Cc 1 º tc 2
tc 2
Temperature
t = 75 Ch 1 º
t = 20 Cc 1 º
q 1
Hot water
Cold water
q 2
Area / Length
( ) Temperature distribution.b
t = 45 Ch 2 º
t = 32 Cc 2 º
Fig. 15.40. Parallel-flow heat exchanger.
Heat lost by hot water = Heat gained by cold water
m&h × cph × (–)tthh 12 = m&c × cpc × (–)ttcc 21
0.2 × 4.187 × (75 – 45) = 0.5 × 4.187 × (–)tc 2 20
∴ tc 2 = 32°C
Logarithmic mean temperature difference (LMTD) is given by,
θm =
θθ
θθ
12
12
−
ln ( / ) ...[Eqn. (15.54)]
or θm =
()( )
ln [( ) / ( )]
tt tt
tttt
hc hc
hc hc
11 2 2
11 22
−− −
−−
=
()()
ln [( ) / ( )] ln ( / )
75 20 45 32
75 20 45 32
55 33
55 13
−−−
−−
= − = 29.12°C
Overall heat transfer coefficient U is calculated from the relation
111 1
650
1
650
1
Uh hio 325
=+=+=
∴ U = 325 W/m^2 °C
Also, Q = U A θm