dharm
\M-therm\Th15-3.pm5
828 ENGINEERING THERMODYNAMICS
=
()()
ln [( ) / ( )]
()()
ln [( ) / ( )]
tt tt
tt tt
hc hc
hc hc
12 2 1
12 21
230 65 160 25
230 65 160 25
−− −
−−
= −− −
−−
or θm =
165 135
165 135
−
ln [( / )] = 149.5°C
Also, Q = U A θm
or A =
Q
Uθm
= ×
×
91.35 10
420 149.5
3
= 1.45 m^2. (Ans.)
Example 15.20. Steam enters a counter-flow heat exchanger, dry saturated at 10 bar and
leaves at 35°C. The mass flow of steam is 800 kg/min. The gas enters the heat exchanger at 650°C and
mass flow rate is 1350 kg/min. If the tubes are 30 mm diameter and 3 m long, determine the number
of tubes required. Neglect the resistance offered by metallic tubes. Use the following data :
For steam : tsat = 180°C (at 10 bar) ; cps = 2.71 kJ/kg°C ; hs = 600 W/m^2 °C
For gas : cpg = 1 kJ/kg°C ; hg = 250 W/m^2 °C (P.U.)
Solution. Given : m&s = m&c =
800
60
= 13.33 kg/s ; mm&&g==h
1350
60 = 22.5 kg/s ;
th 1 = 650°C ; tc 1 (= tsat) = 180°C ; tc 2 = 350°C ; d = 30 mm = 0.03 m ; L = 3 m.
Number of tubes required, N :
Heat lost by gases = Heat gained by steam
m&h × cph × (–)tthh 12 = m&c× cpc × (–)ttcc 21
22.5 × 1 × (650 – th 2 ) = 13.33 × 2.71 × (350 – 180)
∴ th 2 = 377°C
( ) Flow arrangement.a
t = 650 Ch 1 º
t = 350 Cc 2 º
Gas
Gas
steam
t = 650 Ch 1 º
t (= 377 C)h 2 º
t (= 180 C)c 1 º
t (= 377 C)h 2 º
Area
Hot fluid (gases)
Cold fluid (steam)
t = 650 Ch 1 º
t = 350 Cc 2 º
t (= 377 C)h 2 º
t (= 180 C)c 1 º
( ) Temperature distribution.b
Fig. 15.42. Counter-flow heat exchanger.