HEAT TRANSFER 841
dharm
\M-therm\Th15-4.pm5
φ
dA 1
dφ
r sinθ
θ r
dθ
rdθ
r sin dθφ
dA = r sin d d 2 2 θθ φ
(b) Illustration for evaluating area dA 2
Fig. 15.51. Radiation from an elementary surface.
The solid angle subtended by dA 2 = dA
r
2
2
∴ The intensity of radiation, I =
dQ
dA dA
r
12
1 22
−
cosθ×
...(15.82)
where dQ1–2 is the rate of radiation heat transfer from dA 1 to dA 2.
It is evident from Fig. 15.51 (b) that,
dA 2 = r dθ (r sin θ dφ)
or dA 2 = r^2 sin θ.dθ.dφ ...(15.83)
From eqns. (15.82) and (15.83), we obtain
dQ1–2 = I dA 1. sin θ. cos θ. dθ. dφ
The total radiation through the hemisphere is given by
Q = I dA 1
φ
φπ
θ
θ π
θθθφ
=
=
=
=
zz 0
2
0
(^2) sin cos dd
= 2π I dA 1
θ
θ π
=
z 0
(^2) sin θ cos θ dθ
= π I dA 1
θ
π
z= 0
(^2) 2 sin θ cos θ dθ
= π I dA 1
θ
π
z= 0
(^2) sin 2θ dθ
or Q = π I dA 1 ...(15.84)
Also Q = E.dA 1
∴ E dA 1 = π I dA 1
or E = πI
i.e., The total emissive power of a diffuse surface is equal to π times its intensity of radiation.