COMPRESSIBLE FLOW 861
dharm
\M-therm\Th16-1.pm5
Substituting the values in eqn. (ii), we get
1.4
1.4−
F
HG
I
1 KJ
× 89831 1
1
−
R
S
|
T|
U
V
|
W|
−
()1.5
1.4
1.4 = V^2
2
2
-^300
2
2
314408.5 (1 – 1.1228) = V^2
2
2
- 45000 or – 38609.4 = V^2
2
2
- 45000
or, V 22 = 12781.2 or V 2 = 113.05 m/s. (Ans.)
Example 16.2. In the case of air flow in a conduit transition, the pressure, velocity and
temperature at the upstream section are 35 kN/m^2 , 30 m/s and 150°C respectively. If at the
downstream section the velocity is 150 m/s, determine the pressure and the temperature if the
process followed is isentropic. Take γ = 1.4, R = 290 J/kg K.
Sol. Section 1 (upstream) : Pressure, p 1 = 35 kN/m^2 ,
Velocity, V 1 = 30 m/s,
Temperature, T = 150 + 273 = 423 K
Velocity, V 2 = 150 m/s
R = 290 J/kg K, γ = 1.4
Section 2 (downstream) :
Pressure, p 2 :
Applying Bernoulli’s equation at sections 1 and 2 for isentropic (reversible adiabatic) process,
we have
γ
γρ−
F
HG
I
KJ
+
12
1
1
1
p^2
g
V
g + z^1 =
γ
γρ−
F
HG
I
KJ
+
12
2
2
2
p^2
g
V
g + z^2
Assuming z 1 = z 2 , we have
γ
γρ−
F
HG
I
KJ
+
12
1
1
1
p^2
g
V
g =
γ
γρ−
F
HG
I
KJ
+
12
2
2
2
p^2
g
V
g
Cancelling ‘g’ on both the sides, and rearranging, we get
γ
γρ
ρ
− ρ
F
HG
I
KJ
−×
F
HG
I
1 KJ
(^11)
1
2
1
1
2
pp
p =
VV 22 12
22
− ...(i)
For an isentropic flow :
p 1
ρ 1
γ =
p 2
ρ 2
γ or
p
p
1
2
ρ
ρ
γ
1
2
F
HG
I
KJ
or
ρ
ρ
1
2
= p
p
1
2
1
F
HG
I
KJ
γ
Substituting the value of
ρ
ρ
1
2
in eqn. (i), we have
γ
γρ ρ
γ
−
F
HG
I
KJ
−×
F
HG
I
KJ
R
S
|
T
|
U
V
|
W
(^1) |
(^11)
1
2
1
1
2
1
pp
p
p = VV 22 12
22
−
γ
γρ
γ
−
F
HG
I
KJ
−
F
HG
I
KJ
R
S
|
T
|
U
V
|
W
|
−
1
(^11)
1
2
1
1 1
pp
p
VV 22 12
22
−