TITLE.PM5

(Ann) #1
COMPRESSIBLE FLOW 873

dharm
\M-therm\Th16-1.pm5

Substituting the values of ps and ρs from eqns. (16.17) and (16.18), we get

Ts =
1

1 1
2

1 1
2

002

1

00
2

1
R 1

pM

M

+F −
HG

I
KJ

L
NM

O
QP

+F −
HG

I
KJ

L
N
M

O
Q
P



γ

ρ γ

γ
γ

γ

=
1
R^

p (^0) M
0
02
1
1
1
1 1
ρ 2
γ
γ
γγ
L +FHG − IKJ
N
M
O
Q
P
− − −
F
HG
I
KJ


1
R
p
(^0) M
0
0
2
1
1
1
1
ρ 2
γ
γ
γ



  • F −
    HG
    I
    KJ
    L
    N
    M
    O
    Q
    P


    F
    HG
    I
    KJ
    or, Ts = T 0 1 1
    2 0
    +F −^2
    HG
    I
    KJ
    L
    NM
    O
    QP
    γ M ...(16.22) Q p (^0) RT
    0
    ρ =^0
    F
    HG
    I
    KJ
    Example 16.8. An aeroplane is flying at 1000 km/h through still air having a pressure of
    78.5 kN/m^2 (abs.) and temperature – 8 °C. Calculate on the stagnation point on the nose of the
    plane :
    (i)Stagnation pressure, (ii)Stagnation temperature, and
    (iii)Stagnation density.
    Take for air : R = 287 J/kg K and γ = 1.4.
    Sol. Speed of aeroplane, V = 1000 km/h =
    1000 1000
    60 60
    ×
    × = 277.77 m/s
    Pressure of air, p 0 = 78.5 kN/m^2
    Temperature of air, T 0 = – 8 + 273 = 265 K
    For air : R = 287 J/kg K, γ = 1.4
    The sonic velocity for adiabatic flow is given by,
    C 0 = γRT 0 = 1 4 287 265.×× = 326.31 m/s
    ∴ Mach number, M 0 =
    V
    C
    0
    0
    277 77
    326 31
    =.
    .
    = 0.851
    (i) Stagnation pressure, ps :
    The stagnation pressure (ps) is given by the relation,
    ps = p 0 1 1
    2 0
    +F −^21
    HG
    I
    KJ
    L
    N
    M
    O
    Q
    P
    γ −
    γ
    γ
    M ...[Eqn. (16.17)]
    or, ps = 78.5^1
    14 1
    2
    0 851^2
    1
    11
    +FHG − IKJ×
    L
    NM
    O
    QP


. −
.


.4
.4

= 78.5 (1.145)3.5 = 126.1 kN/m^2 (Ans.)
Free download pdf