COMPRESSIBLE FLOW 873
dharm
\M-therm\Th16-1.pm5
Substituting the values of ps and ρs from eqns. (16.17) and (16.18), we get
Ts =
1
1 1
2
1 1
2
002
1
00
2
1
R 1
pM
M
+F −
HG
I
KJ
L
NM
O
QP
+F −
HG
I
KJ
L
N
M
O
Q
P
−
−
γ
ρ γ
γ
γ
γ
=
1
R^
p (^0) M
0
02
1
1
1
1 1
ρ 2
γ
γ
γγ
L +FHG − IKJ
N
M
O
Q
P
− − −
F
HG
I
KJ
1
R
p
(^0) M
0
0
2
1
1
1
1
ρ 2
γ
γ
γ
- F −
HG
I
KJ
L
N
M
O
Q
P
−
−
F
HG
I
KJ
or, Ts = T 0 1 1
2 0
+F −^2
HG
I
KJ
L
NM
O
QP
γ M ...(16.22) Q p (^0) RT
0
ρ =^0
F
HG
I
KJ
Example 16.8. An aeroplane is flying at 1000 km/h through still air having a pressure of
78.5 kN/m^2 (abs.) and temperature – 8 °C. Calculate on the stagnation point on the nose of the
plane :
(i)Stagnation pressure, (ii)Stagnation temperature, and
(iii)Stagnation density.
Take for air : R = 287 J/kg K and γ = 1.4.
Sol. Speed of aeroplane, V = 1000 km/h =
1000 1000
60 60
×
× = 277.77 m/s
Pressure of air, p 0 = 78.5 kN/m^2
Temperature of air, T 0 = – 8 + 273 = 265 K
For air : R = 287 J/kg K, γ = 1.4
The sonic velocity for adiabatic flow is given by,
C 0 = γRT 0 = 1 4 287 265.×× = 326.31 m/s
∴ Mach number, M 0 =
V
C
0
0
277 77
326 31
=.
.
= 0.851
(i) Stagnation pressure, ps :
The stagnation pressure (ps) is given by the relation,
ps = p 0 1 1
2 0
+F −^21
HG
I
KJ
L
N
M
O
Q
P
γ −
γ
γ
M ...[Eqn. (16.17)]
or, ps = 78.5^1
14 1
2
0 851^2
1
11
+FHG − IKJ×
L
NM
O
QP
. −
.
.4
.4
= 78.5 (1.145)3.5 = 126.1 kN/m^2 (Ans.)