880 ENGINEERING THERMODYNAMICS
dharm
\M-therm\Th16-1.pm5
m = A 2
2
1 11
2
1
2
2
1
1
γ
γ
ρ
γ γγ
−
F
HG
I
KJ
−
F
HG
I
KJ
L
N
M
M
M
O
Q
P
P
P
+
p p
p
p
p
/
...(16.28)
The mass rate of flow (m) depends on the value of p
p
2
1
(for the given values of p 1 and ρ 1 at
point 1).
Value of
p
p
2
1
for maximum value of mass rate of flow :
For maximum value of m, we have d
d
p
p
m
2
1
F
HG
I
KJ
() = 0
As other quantities except the ratio p
p
2
1
are constant
∴
d
d
p
p
m
2
1
F
HG
I
KJ
() =
p
p
p
p
2
1
2
2
1
1
F
HG
I
KJ
−
F
HG
I
KJ
L
N
M
M
M
O
Q
P
P
P
/γ γ+
γ
= 0
or,
(^22)
1
(^21)
γ
p γ
p
F
HG
I
KJ
−
- γ
γ
γ
F + γ
HG
I
KJ
F
HG
I
KJ
+ −
(^12)
1
(^11)
p
p
= 0
or, p
p
2
1
(^21)
F
HG
I
KJ
γ−
= γ
F + γ
HG
I
KJ
F
HG
I
KJ
1
2
2
1
1
p
p
or p
p
2
1
2
F
HG
I
KJ
−γ
γ
= γ
- F γ
HG
I
KJ
1
2
2
1
1
p
p
or,
p
p
2
1
F^2
HG
I
KJ
−γ
= γ
γ
F
HG
I
KJ
F
HG
I
KJ
1
2
2
1
p
p
or,
p
p
2
1
F^21
HG
I
KJ
−−γ
Fγ+ γ
HG
I
KJ
1
2
or
p
p
2
1
1
1
2
F
HG
I
KJ
=F +
HG
I
KJ
−γ γ
γ
or,
p
p
2
1
1
F
HG
I
KJ
−γ
2
γ 1
γ
F
HG
I
KJ
or,
p
p
2
1
F
HG
I
KJ
=^2
1
1
γ
γ
γ
F
HG
I
KJ
−
...(16.29)
Eqn. (16.29) is the condition for maximum mass flow rate through the nozzle.
It may be pointed out that a convergent nozzle is employed when the exit pressure is equal
to or more than the critical pressure, and a convergent-divergent nozzle is used when the dis-
charge pressure is less than the critical pressure.
For air with γ = 1.4, the critical pressure ratio,
p
p
2
1
2
41
4
41
- F
HG
I
KJ
−
= 0.528 ...(16.30)