884 ENGINEERING THERMODYNAMICSdharm
\M-therm\Th16-2.pm5Substituting the value of γR = C
T2
in eqn. (i), we getC
TdT
VdV
V2
()γ− 1 ×+^2 = 0or,
1
()γ− 1 2
×+
MdT
TdV
V = 0Q M V
CFHG = IKJ ...(16.34)
From the Mach number relationshipM =
V
γRT
(where γRT = C)dM
M =dV
V –1
2dT
T ...(16.35)Substituting the value of
dT
T from eqns. (16.34) in eqn. (16.35), we get
dM
M =dV
V –1
2L−×−
NMO
QPdV
V()γ 1 M^2=
dV
V +1
2dV
V × (γ – 1) M2or,
dM
M =dV
V^1
1
2L + − 2
NMO
QPγ
M or dV
V =1
1 1
2
+F −^2
HGI
KJL
NMO
QPγ M^dM
M ...(16.36)Since the quantity within the bracket is always positive, the trend of variation of velocity
and Mach number is similar. For temperature variation, one can write
dT
T =−−
+FHG − IKJL
N
M
M
M
MO
Q
P
P
P
P()γ
γ1
1 1
22
2M
MdM
M ...(16.37)Since the right hand side is negative the temperature changes follow an opposite trend to
that of Mach number. Similarly for pressure and density, we have
dp
p =−
+ −L
N
M
M
MO
Q
P
P
Pγ
γM
M21 1 2
2dM
M ...(16.38)and, dρ
ρ
−
+F −
HGI
KJL
N
M
M
M
MO
Q
P
P
P
PM
M21 1 2
2γ^dM
M ...(16.39)For changes in area, we havedA
A =−−
+ −L
N
M
M
MO
Q
P
P
P()1
1 1
22
2M
γ MdM
M ...(16.40)