Mathematical and Statistical Methods for Actuarial Sciences and Finance

(Nora) #1
Robust estimation of style analysis coefficients 171


  1. Attardi, L., Vistocco, D.: Comparing financial portfolio style through quantile regression.
    Stat. Appl. 18, 6–16 (2006)

  2. Attardi, L., Vistocco, D.: On estimating portfolio conditional returns distribution through
    style analysis models. In: Perna, C., Sibillo, M. (eds) Quantitative Methods for Finance
    and Insurance, pp. 11–17. Springer-Verlag, Milan (2007)

  3. Attardi, L., Vistocco, D.: An index for ranking financial portfolios according to internal
    turnover. In: Greenacre, M., Lauro, N.C., Palumbo, F. (eds.) Studies in Classification, Data
    Analysis, and Knowledge Organization. Springer, Berlin-Heidelberg (in press)

  4. Basset, G.W., Chen, H.L.: Portfolio style: return-based attribution using quantile regres-
    sion. In: Fitzenberger, B., Koenker, R., Machado, J.A.F. (eds.) Economic Applications
    of Quantile Regression (Studies in Empirical Economics), pp. 293–305. Physica-Verlag,
    Heidelberg (2001)

  5. Christodoulakis, G.A.: Sharpe style analysis in the msci sector portfolios: a Monte Carlo
    integration approach. Oper. Res. Int. J. 2, 123–137 (2003)

  6. Christodoulakis, G.A.: Sharpe style analysis in the msci sector portfolios: a Monte Carlo
    integration approach. In: Knight, J., Satchell, S. (eds.) Linear Factor Models in Finance,
    pp. 83–94. Elsevier (2005)

  7. Conversano, C., Vistocco, D.: Model based visualization of portfolio style analysis. In:
    Antock, J. (eds.) Proceedings of the International Conference “COMPSTAT 2004”, pp.
    815–822. Physica-Verlag (2004)

  8. Conversano, C., Vistocco, D.: Analysis of mutual fund management styles: a modeling,
    ranking and visualizing approach. J. Appl. Stat. (accepted)

  9. Davis, W.W.: Bayesian analysis of the linear model subject to linear inequality constraints.
    J. Am. Stat. Assoc. 78, 573–579 (1978)

  10. Geweke, J.: Exact inference in the inequality constrained normal linear regression model.
    J. Appl. Econometrics 1, 127–141 (1986)

  11. Horst, J.R., Nijman, T.E., de Roon, F.A.: Evaluating style analysis. J. Empirical Finan. 11,
    29–51 (2004)

  12. Judge, G.G., Takayama, T.: Inequality restrictions in regression analysis. J. Am. Stat.
    Assoc. 61, 166–181 (1966)

  13. Kim, T.H., White, H., Stone, D.: Asymptotic and bayesian confidence intervals for sharpe-
    style weights. J. Finan. Econometrics 3, 315–343 (2005)

  14. Koenker R.: A note on L-estimator for linear models. Stat. Prob. Lett. 2, 323–325 (1984)

  15. Koenker, R.: Quantile regression. Econometric Soc. Monographs (2005)

  16. Koenker, R.: Quantreg: quantile regression. R package version 4.10 (2007) http://www.r-
    project.org.

  17. Koenker R., Basset, G.W.: Regression quantiles. Econometrica 46, 33–50 (1978)

  18. Koenker R., Basset, G.W.: L-estimation for linear models. J. Am. Stat. Assoc. 82, 851–857
    (1987) 20

  19. Koenker R., Ng, P.: Inequality constrained quantile regression. Sankhya Ind. J. Stat. 67,
    418–440 (2005) 21

  20. Lobosco, A., Di Bartolomeo, D.: Approximating the confidence intervals for sharpe style
    weights. Finan. Anal. J. 80–85 (1997)

  21. Politis, D.N., Romano, J.P.: Large sample confidence regions based on subsamplesunder
    minimal assumptions. Ann. Stat. 22, 2031–2050 (1994)

  22. Politis, D.N., Romano, J.P., Wolf, M.: Subsampling. Springer-Verlag, New York (1999)

  23. R Development Core Team.: R: A Language and Environment for Statistical Computing.
    R Foundation for Statistical Computing, Vienna. http://www.R-project.org.

  24. Sharpe, W.: Asset allocation: management styles and performance measurement. J. Port-
    folio Man. 7–19 (1992)

Free download pdf