Some classes of multivariate risk measures 67
In the same way we can define the vector Conditional Value at Risk:
Definition 6.LetXbe a randomvector with values inRn+. Vector CVaR is the distorted
measure C V a R[X;p]=
∫+∞
0 ...
∫+∞
0 g
(
SX(x)
)
dx 1 ...dxn,expressed using the
distortion:
g
(
SX(x)
)
=
⎧
⎨
⎩
SX(x)
∏n
i= 1 (^1 −pi)
0 ≤SXi(xi)≤ 1 −pi
11 −pi<SXi(xi)≤ 1
.
A more tractable form is given by:
g
(
SX(x)
)
=
⎧
⎨
⎩
SX(x)
∏n
i= 1 (^1 −pi)
xi≥VaRXi
10 ≤xi<VaRXi
,
which allows this formula:
CV aR[X;p]=
∫VaRXn
0
...
∫VaRX
1
0
1 dx 1 ...dxn+
∫+∞
VaRXn
...
∫+∞
VaRX 1
SX(x)
∏n
i= 1 (^1 −pi)
dx 1 ...dxn=
VaR[X;p]+
∫+∞
VaRXn
...
∫+∞
VaRX 1
SX(x)
∏n
i= 1 (^1 −pi)
dx 1 ...dxn.
The second part of the formula is not easy to render explicitly if we do not introduce
an independence hypothesis.
If we follow Definition 4 instead of 3 we can introduce a different formulation for
CVaR, very useful in proving a good result proposed later on.
The increasing convex functionfused in the definition of CVaR is the following:
f
(
FX(x)
)
=
⎧
⎪⎨
⎪⎩
0 FXi(xi)<pi 0 ≤xi<VaRXi
FX(x)− 1 +
∏n
∏ i=^1 (^1 −pi)
n
i= 1 (^1 −pi)
FXi(xi)≥pi xi≥VaRXi
Definition 7.LetXbe a randomvector that takes on values inRn+and f be an
increasing function f:[0,1]→[0,1], such that f( 0 )= 0 and f( 1 )= 1 and defined
as above. The Conditional Value at Risk distorted by such an f is the following:
CV aR[X;p]=
∫ VaRXn
0
...
∫VaRX
1
0
1 dx 1 ...dxn+
∫+∞
VaRXn
...
∫+∞
VaRX 1
[
1 −
FX(x)− 1 +
∏n
∏ i=^1 (^1 −pi)
n
i= 1 (^1 −pi)
]
dx 1 ...dxn=
∫+∞
0
...
∫+∞
0
1 −
[FX(x)− 1 +
∏n
∏ i=^1 (^1 −pi)]+
n
i= 1 (^1 −pi)
dx 1 ...dxn.