2.2 INTEGRATION
dAρ(φ)ρ(φ+dφ)ρdφxyO
B
C
Figure 2.9 Finding the area of a sectorOBCdefined by the curveρ(φ)and
the radiiOB,OC, at angles to thex-axisφ 1 ,φ 2 respectively.dA=^12 ρ^2 dφ, as illustrated in figure 2.9, and hence the total area between two
anglesφ 1 andφ 2 is given by
A=∫φ 2φ 11
2 ρ(^2) dφ. (2.38)
An immediate observation is that the area of a circle of radiusais given by
A=
∫ 2 π
0
1
2 a
(^2) dφ=[ 1
2 a
(^2) φ]^2 π
0 =πa
(^2).
The equation in polar coordinates of an ellipse with semi-axesaandbis
1
ρ^2
=
cos^2 φ
a^2+
sin^2 φ
b^2.
Find the areaAof the ellipse.Using (2.38) and symmetry, we have
A=
1
2
∫ 2 π0a^2 b^2
b^2 cos^2 φ+a^2 sin^2 φdφ=2a^2 b^2∫π/ 201
b^2 cos^2 φ+a^2 sin^2 φdφ.To evaluate this integral we writet=tanφand use (2.35):
A=2a^2 b^2∫∞
01
b^2 +a^2 t^2dt=2b^2∫∞
01
(b/a)^2 +t^2dt.Finally, from the list of standard integrals (see subsection 2.2.3),
A=2b^2[
1
(b/a)tan−^1t
(b/a)]∞
0=2ab(π2− 0
)
=πab.