Mathematical Methods for Physics and Engineering : A Comprehensive Guide

(Darren Dugan) #1

28.1 GROUPS


Using only the first equalities in (28.2) and (28.3), deduce the second ones.

Consider the expressionX−^1 • (X•X−^1 );


X−^1 • (X•X−^1 )


(ii)
=(X−^1 • X)•X−^1

(iv)
=I•X−^1
(iii)
=X−^1. (28.6)

ButX−^1 belongs toG, and so from (iv) there is an elementUinGsuch that


U•X−^1 =I. (v)

Form the product ofUwith the first and last expressions in (28.6) to give


U•(X−^1 • (X•X−^1 )) =U•X−^1


(v)
=I. (28.7)

Transforming the left-hand side of this equation gives


U•(X−^1 • (X•X−^1 ))


(ii)
=(U•X−^1 )•(X•X−^1 )
(v)
=I•(X•X−^1 )
(iii)
=X•X−^1. (28.8)

Comparing (28.7), (28.8) shows that


X•X−^1 =I, (iv)′

i.e. the second equality in group definition (iv). Similarly


X•I


(iv)
=X•(X−^1 • X)

(ii)
=(X•X−^1 )•X
(iv)′
=I•X
(iii)
=X. (iii′)

i.e. the second equality in group definition (iii).


The uniqueness of the identity elementIcanalsobedemonstratedratherthan

assumed. Suppose thatI′, belonging toG, also has the property


I′•X=X=X•I′ for allXbelonging toG.

TakeXasI,then


I′•I=I. (28.9)

Further, from (iii′),


X=X•I for allXbelonging toG,
Free download pdf