STATISTICS
Cn(t) 0.5 0.6 0.7 0.8 0.9 0.950 0.975 0.990 0.995 0.999
n=1 0.00 0.33 0.73 1.38 3.08 6.31 12.7 31.8 63.7 318.3
2 0.00 0.29 0.62 1.06 1.89 2.92 4.30 6.97 9.93 22.3
3 0.00 0.28 0.58 0.98 1.64 2.35 3.18 4.54 5.84 10.2
4 0.00 0.27 0.57 0.94 1.53 2.13 2.78 3.75 4.60 7.175 0.00 0.27 0.56 0.92 1.48 2.02 2.57 3.37 4.03 5.89
6 0.00 0.27 0.55 0.91 1.44 1.94 2.45 3.14 3.71 5.21
7 0.00 0.26 0.55 0.90 1.42 1.90 2.37 3.00 3.50 4.79
8 0.00 0.26 0.55 0.89 1.40 1.86 2.31 2.90 3.36 4.50
9 0.00 0.26 0.54 0.88 1.38 1.83 2.26 2.82 3.25 4.3010 0.00 0.26 0.54 0.88 1.37 1.81 2.23 2.76 3.17 4.14
11 0.00 0.26 0.54 0.88 1.36 1.80 2.20 2.72 3.11 4.03
12 0.00 0.26 0.54 0.87 1.36 1.78 2.18 2.68 3.06 3.93
13 0.00 0.26 0.54 0.87 1.35 1.77 2.16 2.65 3.01 3.85
14 0.00 0.26 0.54 0.87 1.35 1.76 2.15 2.62 2.98 3.7915 0.00 0.26 0.54 0.87 1.34 1.75 2.13 2.60 2.95 3.73
16 0.00 0.26 0.54 0.87 1.34 1.75 2.12 2.58 2.92 3.69
17 0.00 0.26 0.53 0.86 1.33 1.74 2.11 2.57 2.90 3.65
18 0.00 0.26 0.53 0.86 1.33 1.73 2.10 2.55 2.88 3.61
19 0.00 0.26 0.53 0.86 1.33 1.73 2.09 2.54 2.86 3.5820 0.00 0.26 0.53 0.86 1.33 1.73 2.09 2.53 2.85 3.55
25 0.00 0.26 0.53 0.86 1.32 1.71 2.06 2.49 2.79 3.46
30 0.00 0.26 0.53 0.85 1.31 1.70 2.04 2.46 2.75 3.39
40 0.00 0.26 0.53 0.85 1.30 1.68 2.02 2.42 2.70 3.31
50 0.00 0.26 0.53 0.85 1.30 1.68 2.01 2.40 2.68 3.26100 0.00 0.25 0.53 0.85 1.29 1.66 1.98 2.37 2.63 3.17
200 0.00 0.25 0.53 0.84 1.29 1.65 1.97 2.35 2.60 3.13
∞ 0.00 0.25 0.52 0.84 1.28 1.65 1.96 2.33 2.58 3.09Table 31.3 The confidence limitstof the cumulative probability function
Cn(t) for Student’st-distribution withndegrees of freedom. For example,
C 5 (0.92) = 0.8. The rown=∞is also the corresponding result for the
standard Gaussian distribution.wheretcritsatisfiesCN− 1 (tcrit)=α/2. Thus the required confidence interval is
̄x−tcrits
√
N− 1<μ< ̄x+tcrits
√
N− 1.Hence, in the above example, the 90% classical central confidence interval onμ
is
0. 49 <μ< 1. 73.Thet-distribution may also be used to compare different samples from Gaussian