4.8 EXERCISES
4.8 TheN+ 1 complex numbersωmare given byωm=exp(2πim/N), form=
0 , 1 , 2 ,... ,N.
(a) Evaluate the following:(i)∑N
m=0ωm, (ii)∑N
m=0ωm^2 , (iii)∑N
m=0ωmxm.(b) Use these results to evaluate:(i)∑N
m=0[
cos(
2 πm
N)
−cos(
4 πm
N)]
, (ii)∑^3
m=02 msin(
2 πm
3)
.
4.9 Prove that
cosθ+cos(θ+α)+···+cos(θ+nα)=sin^12 (n+1)α
sin^12 αcos(θ+^12 nα).4.10 Determine whether the following series converge (θandpare positive real
numbers):
(a)∑∞
n=12sinnθ
n(n+1), (b)∑∞
n=12
n^2, (c)∑∞
n=11
2 n^1 /^2,
(d)∑∞
n=2(−1)n(n^2 +1)^1 /^2
nlnn, (e)∑∞
n=1np
n!.
4.11 Find the real values ofxfor which the following series are convergent:
(a)∑∞
n=1xn
n+1, (b)∑∞
n=1(sinx)n, (c)∑∞
n=1nx,(d)∑∞
n=1enx, (e)∑∞
n=2(lnn)x.4.12 Determine whether the following series are convergent:
(a)∑∞
n=1n^1 /^2
(n+1)^1 /^2, (b)∑∞
n=1n^2
n!, (c)∑∞
n=1(lnn)n
nn/^2, (d)∑∞
n=1nn
n!.
4.13 Determine whether the following series are absolutely convergent, convergent or
oscillatory:
(a)∑∞
n=1(−1)n
n^5 /^2, (b)∑∞
n=1(−1)n(2n+1)
n, (c)∑∞
n=0(−1)n|x|n
n!,
(d)∑∞
n=0(−1)n
n^2 +3n+2, (e)∑∞
n=1(−1)n 2 n
n^1 /^2.
4.14 Obtain the positive values ofxfor which the following series converges:
∑∞n=1xn/^2 e−n
n