Mathematical Methods for Physics and Engineering : A Comprehensive Guide

(Darren Dugan) #1

10.9 CYLINDRICAL AND SPHERICAL POLAR COORDINATES


∇Φ=


∂Φ


∂r

ˆer+

1


r

∂Φ


∂θ

eˆθ+

1


rsinθ

∂Φ


∂φ

ˆeφ

∇·a =

1


r^2


∂r

(r^2 ar)+

1


rsinθ


∂θ

(sinθaθ)+

1


rsinθ

∂aφ
∂φ

∇×a =

1


r^2 sinθ

∣∣



∣∣



∣∣


eˆr reˆθ rsinθeˆφ

∂r


∂θ


∂φ
ar raθ rsinθaφ

∣∣



∣∣



∣∣


∇^2 Φ=


1


r^2


∂r

(


r^2

∂Φ


∂r

)


+


1


r^2 sinθ


∂θ

(


sinθ

∂Φ


∂θ

)


+


1


r^2 sin^2 θ

∂^2 Φ


∂φ^2

Table 10.3 Vector operators in spherical polar coordinates; Φ is a scalar field
andais a vector field.

x

y

z

r

rdθ

φ



dr

rsinθ
rsinθdφ

rsinθdφ
θ

Figure 10.10 The element of volume in spherical polar coordinates is given
byr^2 sinθdrdθdφ.

we can rewrite the first term on the RHS as follows:


1
r^2


∂r

(
r^2

∂Φ
∂r

)
=

1
r

∂^2
∂r^2

(rΦ),

which can often be useful in shortening calculations.

Free download pdf