Mathematical Methods for Physics and Engineering : A Comprehensive Guide

(Darren Dugan) #1

VECTOR CALCULUS


Prove the expression for∇·ain orthogonal curvilinear coordinates.

Let us consider the sub-expression∇·(a 1 ˆe 1 ). Noweˆ 1 =eˆ 2 ׈e 3 =h 2 ∇u 2 ×h 3 ∇u 3. Therefore


∇·(a 1 ˆe 1 )=∇·(a 1 h 2 h 3 ∇u 2 ×∇u 3 ),
=∇(a 1 h 2 h 3 )·(∇u 2 ×∇u 3 )+a 1 h 2 h 3 ∇·(∇u 2 ×∇u 3 ).

However,∇·(∇u 2 ×∇u 3 ) = 0, from (10.43), so we obtain


∇·(a 1 eˆ 1 )=∇(a 1 h 2 h 3 )·

(


eˆ 2
h 2

×


ˆe 3
h 3

)


=∇(a 1 h 2 h 3 )·

ˆe 1
h 2 h 3

;


letting Φ =a 1 h 2 h 3 in (10.60) and substituting into the above equation, we find


∇·(a 1 ˆe 1 )=

1


h 1 h 2 h 3


∂u 1

(a 1 h 2 h 3 ).

Repeating the analysis for∇·(a 2 ˆe 2 )and∇·(a 3 ˆe 3 ), and adding the results we obtain (10.61),
as required.


Laplacian

In the expression for the divergence (10.61), let


a=∇Φ=

1
h 1

∂Φ
∂u 1

ˆe 1 +

1
h 2

∂Φ
∂u 2

eˆ 2 +

1
h 3

∂Φ
∂u 3

ˆe 3 ,

where we have used (10.60). We then obtain


∇^2 Φ=

1
h 1 h 2 h 3

[

∂u 1

(
h 2 h 3
h 1

∂Φ
∂u 1

)
+


∂u 2

(
h 3 h 1
h 2

∂Φ
∂u 2

)
+


∂u 3

(
h 1 h 2
h 3

∂Φ
∂u 3

)]
,

which is the expression for the Laplacian in orthogonal curvilinear coordinates.


Curl

The curl of a vector fielda=a 1 eˆ 1 +a 2 ˆe 2 +a 3 ˆe 3 in orthogonal curvilinear


coordinates is given by


∇×a=

1
h 1 h 2 h 3










h 1 eˆ 1 h 2 eˆ 2 h 3 ˆe 3


∂u 1


∂u 2


∂u 3
h 1 a 1 h 2 a 2 h 3 a 3










. (10.62)


Prove the expression for∇×ain orthogonal curvilinear coordinates.

Let us consider the sub-expression∇×(a 1 eˆ 1 ). Sinceˆe 1 =h 1 ∇u 1 we have


∇×(a 1 ˆe 1 )=∇×(a 1 h 1 ∇u 1 ),
=∇(a 1 h 1 )×∇u 1 + a 1 h 1 ∇×∇u 1.

But∇×∇u 1 =0,soweobtain


∇×(a 1 eˆ 1 )=∇(a 1 h 1 )×

ˆe 1
h 1

.

Free download pdf