12.7 COMPLEX FOURIER SERIES
where the Fourier coefficients are given by
cr=1
L∫x 0 +Lx 0f(x)exp(
−2 πirx
L)
dx. (12.10)This relation can be derived, in a similar manner to that of section 12.2, by mul-
tiplying (12.9) by exp(− 2 πipx/L) before integrating and using the orthogonality
relation
∫x 0 +Lx 0exp(
−2 πipx
L)
exp(
2 πirx
L)
dx={
L forr=p,0forr=p.The complex Fourier coefficients in (12.9) have the following relations to the real
Fourier coefficients:
cr=^12 (ar−ibr),c−r=^12 (ar+ibr).(12.11)Note that iff(x)isrealthenc−r=c∗r, where the asterisk represents complex
conjugation.
Find a complex Fourier series forf(x)=xin the range− 2 <x< 2.Using (12.10), forr=0,
cr=1
4
∫ 2
− 2xexp(
−
πirx
2)
dx=
[
−
x
2 πirexp(
−
πirx
2)] 2
− 2+
∫ 2
− 21
2 πirexp(
−
πirx
2)
dx=−
1
πir[exp(−πir)+exp(πir)]+[
1
r^2 π^2exp(
−
πirx
2)] 2
− 2=2 i
πrcosπr−2 i
r^2 π^2sinπr=2 i
πr(−1)r. (12.12)Forr= 0, we findc 0 = 0 and hence
x=∑∞
r=r=0−∞2 i(−1)r
rπexp(
πirx
2)
.
We note that the Fourier series derived forxin section 12.6 givesar=0forallrand
br=−4(−1)r
πr,
and so, using (12.11), we confirm thatcrandc−rhave the forms derived above. It is also
apparent that the relationshipc∗r=c−rholds, as we expect sincef(x)isreal.