INTEGRAL TRANSFORMS
two- or three-dimensional functions of position. For example, in three dimensions
we can define the Fourier transform off(x, y, z)as
̃f(kx,ky,kz)=^1
(2π)^3 /^2∫∫∫
f(x, y, z)e−ikxxe−ikyye−ikzzdx dy dz, (13.47)and its inverse as
f(x, y, z)=1
(2π)^3 /^2∫∫∫
̃f(kx,ky,kz)eikxxeikyyeikzzdkxdkydkz. (13.48)Denoting the vector with componentskx,ky,kzbykand that with components
x, y, zbyr, we can write the Fourier transform pair (13.47), (13.48) as
̃f(k)=^1
(2π)^3 /^2∫
f(r)e−ik·rd^3 r, (13.49)f(r)=1
(2π)^3 /^2∫
̃f(k)eik·rd^3 k. (13.50)From these relations we may deduce that the three-dimensional Diracδ-function
canbewrittenas
δ(r)=1
(2π)^3∫
eik·rd^3 k. (13.51)Similar relations to (13.49), (13.50) and (13.51) exist for spaces of other dimen-
sionalities.
In three-dimensional space a functionf(r)possesses spherical symmetry, so thatf(r)=
f(r). Find the Fourier transform off(r)as a one-dimensional integral.Let us choose spherical polar coordinates in which the vectorkof the Fourier transform
lies along the polar axis (θ=0).Thiswecandosincef(r) is spherically symmetric. We
then have
d^3 r=r^2 sinθdrdθdφ and k·r=krcosθ,wherek=|k|. The Fourier transform is then given by
̃f(k)=^1
(2π)^3 /^2∫
f(r)e−ik·rd^3 r=
1
(2π)^3 /^2∫∞
0dr∫π0dθ∫ 2 π0dφ f(r)r^2 sinθe−ikrcosθ=
1
(2π)^3 /^2∫∞
0dr 2 πf(r)r^2∫π0dθsinθe−ikrcosθ.The integral overθmay be straightforwardly evaluated by noting that
d
dθ(e−ikrcosθ)=ikrsinθe−ikrcosθ.Therefore
̃f(k)=^1
(2π)^3 /^2∫∞
0dr 2 πf(r)r^2[
e−ikrcosθ
ikr]θ=πθ=0=1
(2π)^3 /^2∫∞
04 πr^2 f(r)(
sinkr
kr)
dr.