13.2 LAPLACE TRANSFORMS
We may now consider the effect of multiplying the Laplace transformf ̄(s)bye−bs(b>0). From the definition (13.53),
e−bsf ̄(s)=∫∞0e−s(t+b)f(t)dt=∫∞0e−szf(z−b)dz,on puttingt+b=z. Thuse−bsf ̄(s) is the Laplace transform of a functiong(t)
defined by
g(t)={
0for0<t≤b,
f(t−b)fort>b.In other words, the functionfhas been translated to ‘later’t(larger values oft)
by an amountb.
Further properties of Laplace transforms can be proved in similar ways andare listed below.
(i) L[f(at)]=1
af ̄(sa)
, (13.61)(ii) L[tnf(t)]=(−1)ndnf ̄(s)
dsn, forn=1, 2 , 3 ,..., (13.62)(iii) L[
f(t)
t]
=∫∞sf ̄(u)du, (13.63)provided limt→ 0 [f(t)/t] exists.Related results may be easily proved.Find an expression for the Laplace transform oftd^2 f/dt^2.From the definition of the Laplace transform we have
L[
td^2 f
dt^2]
=
∫∞
0e−sttd^2 f
dt^2dt=−
d
ds∫∞
0e−std^2 f
dt^2dt=−
d
ds[s^2 f ̄(s)−sf(0)−f′(0)]=−s^2df ̄
ds− 2 sf ̄+f(0).Finally we mention the convolution theorem for Laplace transforms (which isanalogous to that for Fourier transforms discussed in subsection 13.1.7). If the
functionsfandghave Laplace transformsf ̄(s)and ̄g(s)then
L[∫t0f(u)g(t−u)du]
=f ̄(s) ̄g(s), (13.64)