SPECIAL FUNCTIONS
Using de Moivre’s theorem, expiθ=cosθ+isinθ, we then obtain
exp(ixsinθ)=cos(xsinθ)+isin(xsinθ)=∑∞
m=−∞Jm(x)(cosmθ+isinmθ).Equating the real and imaginary parts of this expression gives
cos(xsinθ)=∑∞
m=−∞Jm(x)cosmθ,sin(xsinθ)=∑∞
m=−∞Jm(x)sinmθ.Substituting these expressions into (18.100) then yields
I=
1
π∑∞
m=−∞∫π0[Jm(x)cosmθcosnθ+Jm(x)sinmθsinnθ]dθ.However, using the orthogonality of the trigonometric functions [ see equations (12.1)–
(12.3) ], we obtain
I=1
ππ
2[Jn(x)+Jn(x)] =Jn(x),which proves the integral representation (18.99).
Finally, we mention the special case of the integral representation (18.99) forn=0:
J 0 (x)=1
π∫π0cos(xsinθ)dθ=1
2 π∫ 2 π0cos(xsinθ)dθ,since cos(xsinθ) repeats itself in the rangeθ=πtoθ=2π. However, sin(xsinθ)
changes sign in this range and so
1
2 π∫ 2 π0sin(xsinθ)dθ=0.Using de Moivre’s theorem, we can therefore write
J 0 (x)=1
2 π∫ 2 π0exp(ixsinθ)dθ=1
2 π∫ 2 π0exp(ixcosθ)dθ.There are in fact many other integral representations of Bessel functions; they
can be derived from those given.
18.6 Spherical Bessel functionsWhen obtaining solutions of Helmholtz’ equation (∇^2 +k^2 )u= 0 in spherical
polar coordinates (see section 21.3.2), one finds that, for solutions that are finite
on the polar axis, the radial partR(r) of the solution must satisfy the equation
r^2 R′′+2rR′+[k^2 r^2 −(+1)]R=0, (18.101)