SPECIAL FUNCTIONS
If we letx=n+y,then
lnx=lnn+ln(
1+
y
n)
=lnn+y
n−
y^2
2 n^2+
y^3
3 n^3−···.
Substituting this result into (18.161), we obtain
n!=∫∞
−nexp[
n(
lnn+y
n−
y^2
2 n^2+···
)
−n−y]
dy.Thus, whennis sufficiently large, we may approximaten!by
n!≈enlnn−n∫∞
−∞e−y(^2) /(2n)
dy=enlnn−n
√
2 πn=√
2 πn nne−n,which is Stirling’s approximation (18.160).
18.12.2 The beta functionThebeta functionis defined by
B(m, n)=∫ 10xm−^1 (1−x)n−^1 dx, (18.162)which converges form>0,n>0, wheremandnare, in general, real numbers.
By lettingx=1−yin (18.162) it is easy to show thatB(m, n)=B(n, m). Other
useful representations of the beta function may be obtained by suitable changes
of variable. For example, puttingx=(1+y)−^1 in (18.162), we find that
B(m, n)=∫∞0yn−^1 dy
(1 +y)m+n. (18.163)
Alternatively, if we letx=sin^2 θin (18.162), we obtain immediately
B(m, n)=2∫π/ 20sin^2 m−^1 θcos^2 n−^1 θdθ. (18.164)The beta function may also be written in terms of the gamma function as
B(m, n)=Γ(m)Γ(n)
Γ(m+n). (18.165)
Prove the result (18.165).Using (18.157), we have
Γ(n)Γ(m)=4∫∞
0x^2 n−^1 e−x2
dx∫∞
0y^2 m−^1 e−y2
dy=4
∫∞
0∫∞
0x^2 n−^1 y^2 m−^1 e−(x(^2) +y (^2) )
dx dy.