Mathematical Methods for Physics and Engineering : A Comprehensive Guide

(Darren Dugan) #1

SPECIAL FUNCTIONS


If we letx=n+y,then


lnx=lnn+ln

(


1+


y
n

)


=lnn+

y
n


y^2
2 n^2

+


y^3
3 n^3

−···.


Substituting this result into (18.161), we obtain


n!=

∫∞


−n

exp

[


n

(


lnn+

y
n


y^2
2 n^2

+···


)


−n−y

]


dy.

Thus, whennis sufficiently large, we may approximaten!by


n!≈enlnn−n

∫∞


−∞

e−y

(^2) /(2n)
dy=enlnn−n



2 πn=


2 πn nne−n,

which is Stirling’s approximation (18.160).


18.12.2 The beta function

Thebeta functionis defined by


B(m, n)=

∫ 1

0

xm−^1 (1−x)n−^1 dx, (18.162)

which converges form>0,n>0, wheremandnare, in general, real numbers.


By lettingx=1−yin (18.162) it is easy to show thatB(m, n)=B(n, m). Other


useful representations of the beta function may be obtained by suitable changes


of variable. For example, puttingx=(1+y)−^1 in (18.162), we find that


B(m, n)=

∫∞

0

yn−^1 dy
(1 +y)m+n

. (18.163)


Alternatively, if we letx=sin^2 θin (18.162), we obtain immediately


B(m, n)=2

∫π/ 2

0

sin^2 m−^1 θcos^2 n−^1 θdθ. (18.164)

The beta function may also be written in terms of the gamma function as


B(m, n)=

Γ(m)Γ(n)
Γ(m+n)

. (18.165)


Prove the result (18.165).

Using (18.157), we have


Γ(n)Γ(m)=4

∫∞


0

x^2 n−^1 e−x

2
dx

∫∞


0

y^2 m−^1 e−y

2
dy

=4


∫∞


0

∫∞


0

x^2 n−^1 y^2 m−^1 e−(x

(^2) +y (^2) )
dx dy.

Free download pdf