2.2 INTEGRATION
found near the end of subsection 2.1.1. A few are presented below, using the form
given in (2.30):
∫
adx=ax+c,∫
axndx=axn+1
n+1+c,∫
eaxdx=eax
a+c,∫
a
xdx=alnx+c,∫
acosbx dx=asinbx
b+c,∫
asinbx dx=−acosbx
b+c,∫
atanbx dx=−aln(cosbx)
b+c,∫
acosbxsinnbx dx=asinn+1bx
b(n+1)+c,∫
a
a^2 +x^2dx=tan−^1(xa)
+c,∫
asinbxcosnbx dx=−acosn+1bx
b(n+1)+c,∫
− 1
√
a^2 −x^2dx=cos−^1(xa)
+c,∫
1
√
a^2 −x^2dx=sin−^1(xa)
+c,where the integrals that depend onnare valid for alln=−1andwhereaandb
are constants. In the two final results|x|≤a.
2.2.4 Integration of sinusoidal functionsIntegrals of the type
∫
sinnxdxand∫
cosnxdxmay be found by using trigono-metric expansions. Two methods are applicable, one for oddnand the other for
evenn. They are best illustrated by example.
Evaluate the integralI=∫
sin^5 xdx.Rewriting the integral as a product of sinxand an even power of sinx, and then using
the relation sin^2 x=1−cos^2 xyields
I=∫
sin^4 xsinxdx=
∫
(1−cos^2 x)^2 sinxdx=
∫
(1−2cos^2 x+cos^4 x)sinxdx=
∫
(sinx−2sinxcos^2 x+sinxcos^4 x)dx=−cosx+^23 cos^3 x−^15 cos^5 x+c,where the integration has been carried out using the results of subsection 2.2.3.