P1: qVa Trim: 6.125in×9.25in Top: 0.5in Gutter: 0.75in
CUUS2079-03 CUUS2079-Zafarani 978 1 107 01885 3 January 13, 2014 16:45
3.1 Centrality 57
v 2 v 5
v 3
v 1
v 4
Figure 3.3. Katz Centrality Example.
where 1 is a vector of all 1’s. Taking the first term to the left hand side and
factoringCKatz,
CKatz=β(I−αAT)−^1 · 1. (3.21)
Since we are inverting a matrix here, not allαvalues are acceptable.
Whenα=0, the eigenvector centrality part is removed, and all nodes get
the same centrality valueβ. However, onceαgets larger, the effect of
βis reduced, and when det(I−αAT)=0, the matrixI−αATbecomes
non-invertible and the centrality values diverge. The det(I−αAT) first DIVERGENCE
IN
CENTRALITY
COMPUTATION
becomes 0 whenα= 1 /λ, whereλis the largest eigenvalue^2 ofAT.In
practice,α< 1 /λis selected so that centralities are computed correctly.
Example 3.4.For the graph shown in Figure3.3, the adjacency matrix is
as follows:
A=
⎡
⎢⎢
⎢⎢
⎣
01110
10111
11011
11100
01100
⎤
⎥⎥
⎥⎥
⎦
=AT. (3.22)
The eigenvalues of A are (− 1. 68 ,− 1. 0 ,− 1. 0 ,+ 0. 35 ,+ 3 .32).The
largest eigenvalue of A isλ= 3. 32. We assumeα= 0. 25 < 1 /λand
β= 0. 2. Then, Katz centralities are
CKatz=β(I−αAT)−^1 · 1 =
⎡
⎢⎢
⎢⎢
⎣
1. 14
1. 31
1. 31
1. 14
0. 85
⎤
⎥⎥
⎥⎥
⎦
. (3.23)
Thus, nodesv 2 , andv 3 have the highest Katz centralities.