3.3.4 Odd and even functions
(i) odd (ii) even (iii) odd
(iv) neither (v) even (vi) even
(vii) odd (viii) neither
3.3.5 Composition of functions
f(g(x))=
x^2 + 1
(x^2 + 1 )− 1
=
x^2 + 1
x^2
g(f(x))=
(
x
x− 1
) 2
+ 1 =
2 x^2 − 2 x+ 1
(x− 1 )^2
3.3.6 Inequalities
(i) x>^52 (ii) − 3 <x< 3 (iii) x≥2,x≤− 1
(iv) − 3 <x<1(v)−^12 ≤x≤^32 (vi) x>^92 ,x<^72
(vii)^23 <x< 1
3.3.7 Inverse of a function
(i)
x− 1
2
domain: all values; range: all values
(ii)
1 + 2 x
1 −x
domain: all values=1; range: all values=− 2
(iii)
√
x−1 domain: any value≥1; range: any value≥ 0
3.3.8 Series and sigma notation
A. (i)
∑^5
n= 1
n^3 (ii)
∑^33
n= 1
3 n (iii)
∑^50
n= 2
1
n
(iv)
∑∞
n= 0
(− 1 )n
1
3 n
Note that alternative forms are permissible – for example an equally acceptable answer
to (iii) is
∑^49
n= 1
1
n+ 1
.
B. (i) 1+
1
2
+
1
3
+
1
4
(ii) 1+ 1 + 2 +6 (note 0!= 1 )
(iii)
1
2
+
1
6
+
1
12
+
1
20