Understanding Engineering Mathematics

(やまだぃちぅ) #1
(x) sin

2 π
3

(xi) cos

π
3

(xii) tan 45°

(xiii) cos 30° (xiv) sin 30° (xv) tan

π
3
(xvi) cos 45° (xvii) cos

3 π
2

(xviii) tan(− 60 °)

(xix) sin(− 120 °) (xx) cos

(

π
3

)
(xxi) sin( 585 °)

(xxii) cos( 225 °) (xxiii) tan(− 135 °) (xxiv) sec 30°
(xxv) cosecπ/ 4 (xxvi) cot 60° (xxvii) sec 120°
(xxviii) cos

(

π
2

)
(xxix) cosec(− 60 °)

6.1.3 Sine and cosine rules and solutions of triangles ➤178 194➤➤


For the triangle below find (i)a (ii)θ.


a

2

5

q

60 °

6.1.4 Graphs of the trigonometric functions ➤180 195➤➤


Sketch the graphs of (i) 3 sin


(
t−

π
2

)
(ii) 4 cos

(
2 t−

π
6

)
(iii) tan

(
t+

π
2

)

6.1.5 Inverse trigonometric functions ➤184 195➤➤


Evaluate the following inverse trigonometric ratios in the range 0≤θ≤ 90 °:


(i) sin−^1

(
1
2

)
(ii) sin−^1

(√
3
2

)
(iii) cos−^1

(√
3
2

)

(iv) cos−^1

(
1
2

)
(v) tan−^1

(
1

3

)
(vi) tan−^1 (


3 )

6.1.6 The Pythagorean identities – cos^2 Ysin
2
= 1 ➤185 195➤➤


Complete the following table in which each angle is in the first quadrant:


sinθ cosθ tanθ

(i)

1
7
(ii)

1

3
(iii)

1

2
Free download pdf