Such a conversion simplifies the solution of equations such asacosθ+bsinθ=cby conversion to the form
cos(θ+α)=c
r=c
√
a^2 +b^2for example.
Solution to review question 6.1.9(i) We assume that we can writecosθ+sinθ=rsin(θ+α)
=rsinθcosα+rcosθsinα
then rcosα= 1
rsinα= 1
so r^2 = 12 + 12 = 2
and r=√
2Then cosα=1
√
2sinα=1
√
2
so tanα=1, in the first quadrant, and hence
α= 45 °and cosθ+sinθ=√
2sin(θ+ 45 °)
(ii) In this casecosθ+sinθ=rcos(θ+α)
=rcosθcosα−rsinθsinα
so rcosα= 1
rsinα=− 1
As before r=√
2 ,socosα=1
√
2sinα=−1
√
2
The appropriate solution in this case is
α=− 45 °so
cosθ+sinθ=√
2cos(θ− 45 °)