D.Ifrcosθ=3andrsinθ=4 determine the positive value ofr, and the principal value
ofθ.
6.3.7 Compound angle formulae
➤➤
173 187
➤
A.Prove the following
(i) sin 3θ=3sinθ−4sin^3 θ (ii) cos 3θ=4cos^3 θ−3cosθ
(iii)
cos 2θ
cosθ+sinθ
=cosθ−sinθ (iv) cotθ−tanθ=2cot2θ
(v) cot 2θ=
cot^2 θ− 1
2cotθ
B.Without using a calculator or tables evaluate
(i) sin 15°cos 15° (ii) sin 15° (iii) tan(π/ 12 ) (iv) cos( 11 π/ 12 )
(v) tan( 7 π/ 12 ) (vi) cos 75°
C.Evaluate
(i) sin 22. 5 ° (ii) cos 22. 5 ° (iii) tan 22. 5 °
given that cos 45°= 1 /
√
2.
D.Express the following products as sums or differences of sines and/or cosines of
multiple angles
(i) sin 2xcos 3x (ii) sinxsin 4x (iii) cos 2xsinx (iv) cos 4xcos 5x
E.Prove the following identities (Hint: putP=(A+B)/2,Q=(A−B)/2intheleft-
hand sides, expand and simplify and re-express in terms ofP andQ)
(i) sinP+sinQ≡2sin
(
P+Q
2
)
cos
(
P−Q
2
)
(ii) sinP−sinQ≡2cos
(
P+Q
2
)
sin
(
P−Q
2
)
(iii) cosP+cosQ≡2cos
(
P+Q
2
)
cos
(
P−Q
2
)
(iv) cosP−cosQ≡−2sin
(
P+Q
2
)
sin
(
P−Q
2
)
6.3.8 Trigonometric equations
➤➤
173 191
➤
A.Give the general solution to each of the equations:
(i) cosθ= 0 (ii) cosθ=− 1 (iii) cosθ=−
√
3
2