Understanding Engineering Mathematics

(やまだぃちぅ) #1
D.Ifrcosθ=3andrsinθ=4 determine the positive value ofr, and the principal value
ofθ.

6.3.7 Compound angle formulae


➤➤
173 187


A.Prove the following


(i) sin 3θ=3sinθ−4sin^3 θ (ii) cos 3θ=4cos^3 θ−3cosθ

(iii)

cos 2θ
cosθ+sinθ

=cosθ−sinθ (iv) cotθ−tanθ=2cot2θ

(v) cot 2θ=

cot^2 θ− 1
2cotθ

B.Without using a calculator or tables evaluate

(i) sin 15°cos 15° (ii) sin 15° (iii) tan(π/ 12 ) (iv) cos( 11 π/ 12 )
(v) tan( 7 π/ 12 ) (vi) cos 75°

C.Evaluate


(i) sin 22. 5 ° (ii) cos 22. 5 ° (iii) tan 22. 5 °

given that cos 45°= 1 /


2.

D.Express the following products as sums or differences of sines and/or cosines of
multiple angles


(i) sin 2xcos 3x (ii) sinxsin 4x (iii) cos 2xsinx (iv) cos 4xcos 5x

E.Prove the following identities (Hint: putP=(A+B)/2,Q=(A−B)/2intheleft-
hand sides, expand and simplify and re-express in terms ofP andQ)

(i) sinP+sinQ≡2sin

(
P+Q
2

)
cos

(
P−Q
2

)

(ii) sinP−sinQ≡2cos

(
P+Q
2

)
sin

(
P−Q
2

)

(iii) cosP+cosQ≡2cos

(
P+Q
2

)
cos

(
P−Q
2

)

(iv) cosP−cosQ≡−2sin

(
P+Q
2

)
sin

(
P−Q
2

)

6.3.8 Trigonometric equations


➤➤
173 191


A.Give the general solution to each of the equations:


(i) cosθ= 0 (ii) cosθ=− 1 (iii) cosθ=−


3
2
Free download pdf