(iv)
√
3
2
π
3
nπ+(− 1 )n
π
3
π
6
2 nπ±
π
6
(v)
1
√
2
π
4
nπ+(− 1 )n
π
4
π
4
2 nπ±
π
4
(vi) −
1
√
2
−
π
4
nπ+(− 1 )n+^1
π
4
3 π
4
2 nπ±
3 π
4
wherenis an integer
B.
tan−^1 x 01
√
3 − 1 −
1
√
3
PV 0
π
4
π
3
−
π
4
−
π
6
GS nπ nπ+
π
4
nπ+
π
3
nπ−
π
4
nπ−
π
6
6.3.6 The Pythagorean identities – cos^2 Ysin
2
= 1
A.You may obtain different forms of the answers – consider it a further exercise to check
their equivalence to the following!
(i) (a) sinθ (b) cotθ (c) tan^2 θ
(ii) (a) cosθ (b) cosecθcotθ (c) secθtanθ
(iii) (a) secθ (b) sinθcosθ (c) cosθcotθ
B. (i)
x^2
a^2
+
y^2
b^2
= 1 (ii) y=
bx
√
a^2 −x^2
C. (i)
√
21
5
,
2
√
21
(ii)
2
√
42
13
,
1
2
√
42
(iii)
24
25
,
7
24
D.5, 53.13°
6.3.7 Compound angle formulae
B. (i)
1
4
(ii)
√
2 (
√
3 − 1 )
4
(iii) 2−
√
3
(iv) −
√
2 (
√
3 + 1 )
4
(v) −( 2 +
√
3 ) (vi)
√
2 (
√
3 − 1 )
4
C. (i)
√
( 2 −
√
2 )
2
(ii)
√
2 +
√
2
2
(iii)
√
6 ( 2 −
√
2 )
6