Understanding Engineering Mathematics

(やまだぃちぅ) #1
=lim
δx→ 0
+δx

=

8.1.3 Standard derivatives ➤232 243➤➤


Give the derivatives of the following functions

(i) 49 (ii) x^4 (iii)


x (iv)

1
x^2
(v) sinx (vi) ex (vii) lnx (viii) 2x

8.1.4 Rules of differentiation ➤234 244➤➤


Differentiate and simplify

(i) 3x^4 − 2 x^2 + 3 x− 1 (ii) x^2 cosx

(iii)

x− 1
x+ 1

(iv) cos(x^2 + 1 )

(v) ln 3x (vi) e−^2 x
(vii)


x^2 − 1

8.1.5 Implicit differentiation ➤238 244➤➤


A.Ifx^2 + 2 xy+ 2 y^2 =1 obtain

dy
dx

as a function ofxandy.
B. Obtain the derivative of sin−^1 xby using implicit differentiation.
C.Differentiatey= 2 x.
D.Iff(x)=

x− 1
x+ 2

evaluatef′( 1 ).

8.1.6 Parametric differentiation ➤240 245➤➤


Ifx= 3 t^2 ,y=cos(t+ 1 )evaluate

dy
dx

as a function oft.

8.1.7 Higher order derivatives ➤241 245➤➤


A.Evaluate the second derivative of each of the following functions:


(i) 2x+ 1 (ii) x^3 − 2 x+ 1

(iii) e−xcosx (iv)

x+ 1
(x− 1 )(x+ 2 )
Free download pdf