function of a function rule to change the differentiation to one with
respect tot, and writed^2 y
dx^2=d
dx(
dy
dx)
=d
dt(
dy
dx)
×dt
dx=d
dt(
dy
dx)/
dx
dton usingdt
dx= 1/
dx
dt
So:
d^2 y
dx^2=d
dt(
1
2 t)/
2 t−1
2 t^2/
2 t=−1
4 t^38.3 Reinforcement
8.3.1 Geometrical interpretation of differentiation
➤➤
228 230➤A.Evaluate the slopes of the following curves at the points specified:
(i) y=x^3 −xx= 1 (ii) y=sinxx=π(iii) y= 2 ex x=0(iv)y=3
xx= 1B.Determine where the slope of the curvey= 2 x^3 + 3 x^2 − 12 x+6 is zero.8.3.2 Differentiation from first principles
➤➤
228 230➤Differentiate from first principles:(i) 3x (ii) x^2 + 2 x+ 1 (iii) x^3 (iv) cosx8.3.3 Standard derivatives
➤➤
229 232➤A.Differentiate without reference to a standard derivatives table:(i) ex (ii) cosx (iii) x^31 (iv) lnx(v) sinx (vi) x1(^3) (vii) tanx (viii)^1
x^3