Understanding Engineering Mathematics

(やまだぃちぅ) #1
function of a function rule to change the differentiation to one with
respect tot, and write

d^2 y
dx^2

=

d
dx

(
dy
dx

)
=

d
dt

(
dy
dx

)
×

dt
dx

=

d
dt

(
dy
dx

)/
dx
dt

on using

dt
dx

= 1

/
dx
dt
So:
d^2 y
dx^2

=

d
dt

(
1
2 t

)/
2 t


1
2 t^2

/
2 t=−

1
4 t^3

8.3 Reinforcement

8.3.1 Geometrical interpretation of differentiation


➤➤
228 230


A.Evaluate the slopes of the following curves at the points specified:


(i) y=x^3 −xx= 1 (ii) y=sinxx=π

(iii) y= 2 ex x=0(iv)y=

3
x

x= 1

B.Determine where the slope of the curvey= 2 x^3 + 3 x^2 − 12 x+6 is zero.

8.3.2 Differentiation from first principles


➤➤
228 230


Differentiate from first principles:

(i) 3x (ii) x^2 + 2 x+ 1 (iii) x^3 (iv) cosx

8.3.3 Standard derivatives


➤➤
229 232


A.Differentiate without reference to a standard derivatives table:

(i) ex (ii) cosx (iii) x^31 (iv) lnx

(v) sinx (vi) x

1

(^3) (vii) tanx (viii)^1
x^3

Free download pdf