8.3.2 Differentiation from first principles
(i) 3 (ii) 2x+ 2 (iii) 3x^2 (iv) −sinx
8.3.3 Standard derivatives
A.(i) ex (ii) −sinx (iii) 31x^30 (iv)
1
x
(v) cosx
(vi)
1
3
x−^2 /^3 (vii) sec^2 x (viii) −
3
x^4
B.(i)
x^5
5
+C (ii) sinx+C (iii) ex+C (iv) −cosx+C
(v) C−
1
3 x^3
(vi)
2
3
x^3 /^2 +C (vii) lnx+C (viii) C
(ix) tanx+C
8.3.4 Rules of differentiation
A.(i) secxtanx (ii) −cosecxcotx (iii) −cosec^2 x
(iv) sinhx (v) coshx (vi) sech^2 x
(vii) −cosechxcothx (viii) −sechxtanhx (ix) −cosech^2 x
B.(i) tanx (ii) cotx (iii) secx
(iv) −cosecx (v) tanhx (vi) cothx
C.(i) 7x^6 − 10 x^4 + 4 x^3 − 2 x (ii) 2xtanx+(x^2 + 2 )sec^2 x
(iii)
x^2 + 1 − 2 x^2 lnx
x(x^2 + 1 )^2
(iv) ( 3 x^2 − 2 )ex
(^3) − 2 x
(v) −
1
(x^2 − 1 )^3 /^2
(vi)
−sinx
cosx+ 1
(vii) −
1
x^2
cos
(
x+ 1
x
)
(viii) secxtan^2 x+sec^3 x (ix) 6e^6 x (x) ex(x+ 1 )
(xi) − 2 xe−x
2
(xii)
1
x
(xiii) ex(lnx+
1
x
)
(xiv) 2
8.3.5 Implicit differentiation
A.(i) −
1
√
1 −x^2
(ii)
1
1 +x^2
(iii) πxlnπ
B.(i) 0 (ii)
5
2
C. −
4
9