9.1.11 Choice of integration methods ➤276 284➤➤
Discuss the methods you would use to integrate the following – you will be asked to
integrate them in RE9.3.11C.
(i)
x− 3
x^2 − 6 x+ 4
(ii) sin^3 x (iii)
elnx
x
(iv)
x− 1
2 x^2 +x− 3
(v) xe^3 x
2
(vi)
3
√
3 − 2 x−x^2
(vii) xsin(x+ 1 ) (viii) cos^4 x (ix) ln
(
ex
x
)
(x)
x+ 2
x^2 − 5 x+ 6
(xi) xe^2 x (xii) excos(ex)
(xiii) sin 2xcos 2x (xiv)
x− 1
√
x^2 − 2 x+ 3
(xv)
x+ 3
x^2 + 2 x+ 2
(xvi) sin 4xcos 5x (xvii) xcos(x^2 + 1 )
9.1.12 The definite integral ➤278 284➤➤
A.Evaluate
(i)
∫ 1
0
(x^2 + 1 )dx (ii)
∫ 1
0
xexdx (iii)
∫ 2
0
x^2
x^3 + 1
dx
(iv)
∫ 2 π
0
cosxsinxdx
B. What is wrong with
∫ 2
0
dx
x^2 − 1
?
9.2 Revision
9.2.1 Definition of integration
➤
251 280➤
Integration (or more strictly indefinite integration) is the reverse of differentiation.
Thus, if
dy
dx
=f(x)
then
y=
∫
f(x)dx
is theanti-derivativeorindefinite integraloff(x)(also sometimes called the ‘primi-
tive’).f(x)is called theintegrand.