9.1.11 Choice of integration methods ➤276 284➤➤
Discuss the methods you would use to integrate the following – you will be asked to
integrate them in RE9.3.11C.
(i)x− 3
x^2 − 6 x+ 4(ii) sin^3 x (iii)elnx
x(iv)x− 1
2 x^2 +x− 3(v) xe^3 x2
(vi)3
√
3 − 2 x−x^2(vii) xsin(x+ 1 ) (viii) cos^4 x (ix) ln(
ex
x)(x)x+ 2
x^2 − 5 x+ 6(xi) xe^2 x (xii) excos(ex)(xiii) sin 2xcos 2x (xiv)x− 1
√
x^2 − 2 x+ 3(xv)x+ 3
x^2 + 2 x+ 2(xvi) sin 4xcos 5x (xvii) xcos(x^2 + 1 )9.1.12 The definite integral ➤278 284➤➤
A.Evaluate
(i)∫ 10(x^2 + 1 )dx (ii)∫ 10xexdx (iii)∫ 20x^2
x^3 + 1dx(iv)∫ 2 π0cosxsinxdxB. What is wrong with
∫ 20dx
x^2 − 1?9.2 Revision
9.2.1 Definition of integration
➤
251 280➤Integration (or more strictly indefinite integration) is the reverse of differentiation.
Thus, if
dy
dx=f(x)then
y=∫
f(x)dxis theanti-derivativeorindefinite integraloff(x)(also sometimes called the ‘primi-
tive’).f(x)is called theintegrand.