(iii) When we make a substitution, we can change the limits too – then
we don’t have to return to the original variables.In∫ 10x^2
x^3 + 1dxthe numerator is the derivative of the denomi-nator (almost), so putu=x^3 +1.Thendu= 3 x^2 dxorx^2 dx=du
3
The limits onuare obtained from the substitutionwhenx= 0 ,u= 03 + 1 = 1
whenx= 2 ,u= 23 + 1 = 9So ∫ 20x^2
x^3 + 1dx=1
3∫ 91du
u=1
3[lnu]^91=1
3(ln 9−ln 1)=1
3ln 9remembering that ln 1=0.(iv) This sort of integral is very important in the theory of Fourier
series (see Chapter 17). Using the double angle formula we have
∫ 2 π0cosxsinxdx=1
2∫ 2 π0sin 2xdx=−1
4[cos 2x]^20 π= 0B.∫ 20dx
x^2 − 1=∫ 20dx
(x− 1 )(x+ 1 )
The integrand doesn’t exist (‘becomes singular’) atx=1, which
is within the range of integration.9.3 Reinforcement
9.3.1 Definition of integration
➤➤
251 253➤A.Differentiate the following functions:
(i) 3x^3 (ii)√
3 x (iii)2
x^4(iv) x^2 /^5