Understanding Engineering Mathematics

(やまだぃちぅ) #1

9.3.7 Integrating rational functions


➤➤
252 265


A.Integrate the following by partial fractions:

(i)

2 x
(x− 1 )(x+ 3 )

(ii)

x+ 1
x^2 + 5 x+ 6

(iii)

4
2 x^2 −x− 1

(iv)

3
(x+ 1 )(x^2 + 1 )

(v)

x+ 1
(x− 1 )^2 (x− 2 )

(vi)

2 x+ 1
x^3 + 2 x^2 −x− 2

B. Integrate the following by completing the square:

(i)

1
x^2 + 2 x+ 5

(ii)

3
x^2 − 2 x+ 2

(iii)

2
2 x^2 + 2 x+ 1

(iv)

1
x^2 + 6 x+ 10

(v)

1
2 x^2 + 12 x+ 27

C.Integrate:

(i)

x^2 + 1
(x+ 1 )(x+ 2 )

(ii)

x^3
x^2 + 2 x+ 2

(iii)

3 x^4
(x− 1 )(x+ 1 )

9.3.8 Using trig identities in integration


➤➤
252 269

Integrate:

(i) cos^2 xsin^3 x (ii) cos 2xcos 3x (iii) cos^5 x
(iv) cos 5xsin 3x (v) sin 2xsin 3x

9.3.9 Using trig substitutions in integration


➤➤
252 272

A.Integrate the following functions using appropriate substitutions:


(i)

1

4 − 4 x^2

(ii)

2
4 + 9 x^2

(iii)

2

1 − 9 x^2

(iv)

3
1 + 4 x^2

(v)

1

8 − 2 x−x^2

(vi)

1

6 x−x^2

B.Use thet=tan

θ
2

substitution to integrate


1
3 +5cosθ

dθ.

9.3.10 Integration by parts


➤➤
252 273


Integrate:

(i) xcosx (ii) x^3 ex (iii) sin−^1 x (iv) excosx
(v) x^2 cosx (vi) xlnx (vii) x^3 ex

2
Free download pdf