(iii) Point of inflection at (0, 0)
(iv) Min at (5, 2), max at (−5,−2)
(v) Min at (3, 23), max at (2, 24), point of inflection atx=^52
(vi) Min atx=^32 ,minatx=−2, point of inflection atx=−^14
B. Max of
16
3
√
3
atx=−
2
√
3
and min of−
16
3
√
3
atx=
2
√
3
. The slope at the point of
inflection,x=0, is−4.
10.3.4 Curve sketching in Cartesian coordinates
y
y
y
y
x x x
y y
y
− 1 1 2 x − 1 x x x
1
− 1
1
1
0
1
1
0 0 0
4
0 0 0
(i) (ii) (iii) (iv)
(v) (vi) (vii)
10.3.5 Applications of integration – area under a curve
A.(i)
28
3
(ii)
3
2
−ln 2
(iii) e (iv)
1
2
(v)
28
3
(vi)
π
4
B.(i)− 4 (ii) 0
C. 1
D.
11
6