Understanding Engineering Mathematics

(やまだぃちぅ) #1
(iii) Point of inflection at (0, 0)

(iv) Min at (5, 2), max at (−5,−2)

(v) Min at (3, 23), max at (2, 24), point of inflection atx=^52
(vi) Min atx=^32 ,minatx=−2, point of inflection atx=−^14

B. Max of


16
3


3

atx=−

2

3

and min of−

16
3


3

atx=

2

3

. The slope at the point of


inflection,x=0, is−4.

10.3.4 Curve sketching in Cartesian coordinates


y

y

y

y

x x x

y y
y

− 1 1 2 x − 1 x x x

1

− 1

1

1
0

1

1
0 0 0

4

0 0 0

(i) (ii) (iii) (iv)

(v) (vi) (vii)

10.3.5 Applications of integration – area under a curve


A.(i)


28
3

(ii)

3
2

−ln 2

(iii) e (iv)

1
2

(v)

28
3

(vi)

π
4

B.(i)− 4 (ii) 0


C. 1


D.


11
6
Free download pdf