xO
yz P(x,y,z)OPrFigure 11.12Position vector of a pointP.
Themagnitudeorlengthof a vectora=a 1 i+a 2 j+a 3 kis given bya=|a|=√
a^21 +a^22 +a 32(also calledmodulusornormofa).
Aunit vectoris one of unit norm or magnitude – usually denoted with a circumflex,
for exampleaˆ.
Problem 11.4
Show that a=√
3
2iY1
2jisaunitvector.We have|a|=
√√
√
√(√
3
2) 2
+(
1
2) 2
+ 02 =1.Problem 11.5
Construct a unit vector parallel to a=iYj−3k.To construct a unit vector parallel to a given vector we have only to divide by its modulus,
which fora=i+j− 3 kis
|a|=√
12 + 12 +(− 3 )^2 =√
11so a unit vector parallel toais
ˆa=1
√
11(i+j− 3 k)In general a vectora=a 1 i+a 2 j+a 3 kismultiplied by a scalarλas follows:λa=λa 1 i+λa 2 j+λa 3 ki.e. all components are multiplied byλ.
Note that the magnitude ofλais:
|λa|=λ|a|=λa