x
O
y
z P(x,y,z)
OPr
Figure 11.12Position vector of a pointP.
Themagnitudeorlengthof a vectora=a 1 i+a 2 j+a 3 kis given by
a=|a|=
√
a^21 +a^22 +a 32
(also calledmodulusornormofa).
Aunit vectoris one of unit norm or magnitude – usually denoted with a circumflex,
for exampleaˆ.
Problem 11.4
Show that a=
√
3
2
iY
1
2
jisaunitvector.
We have|a|=
√√
√
√
(√
3
2
) 2
+
(
1
2
) 2
+ 02 =1.
Problem 11.5
Construct a unit vector parallel to a=iYj−3k.
To construct a unit vector parallel to a given vector we have only to divide by its modulus,
which fora=i+j− 3 kis
|a|=
√
12 + 12 +(− 3 )^2 =
√
11
so a unit vector parallel toais
ˆa=
1
√
11
(i+j− 3 k)
In general a vectora=a 1 i+a 2 j+a 3 kismultiplied by a scalarλas follows:
λa=λa 1 i+λa 2 j+λa 3 k
i.e. all components are multiplied byλ.
Note that the magnitude ofλais:
|λa|=λ|a|=λa