12.5 Division in polar form
You can probably guess what happens with division in polar form now – divide modulii
and subtract arguments. Again, check the details for yourself:
(^) (θ 1 )
(^) (θ 2 )=
cosθ 1 +jsinθ 1
cosθ 2 +jsinθ 2
cosθ 1 +jsinθ 1
cosθ 2 +jsinθ 2
×
cosθ 2 −jsinθ 2
cosθ 2 −jsinθ 2
=(cosθ 1 cosθ 2 +sinθ 1 sinθ 2 )+j(sinθ 1 cosθ 2 −sinθ 2 cosθ 1 )
(on using cos^2 θ 2 +sin^2 θ 2 = 1 )
=cos(θ 1 −θ 2 )+jsin(θ 1 −θ 2 )=^ (θ 1 −θ 2 )
Hence
r 1 (θ 1 )
r 2 (θ 2 )
r 1
r 2
(^) (θ 1 −θ 2 )
So, to divide in polar form:
- Divide modulii to obtain the modulus of the quotient
- Subtract arguments to obtain the argument of the quotient.
In symbols ∣
∣
∣
∣
z 1
z 2
∣
∣
∣
∣=
|z 1 |
|z 2 |
arg
(
z 1
z 2
)
=arg(z 1 )−arg(z 2 )
Arg
(
z 1
z 2
)
=Argz 1 −Argz 2 + 2 kπ kan integer
Problem 12.9
Work
√
3 −j
1 −
√
3 j
in Cartesian and polar forms and compare the results.
We already know from Problem 12.8 that
√
3 −j= 2
(
−
π
6
)
and 1−
√
3 j= 2
(
−
π
3
)
So in polar form
√
3 −j
1 −
√
3 j
=
2
(
−
π
6
)
2
(
−
π
3
)=^
(
−
π
6
+
π
3
)
=^
(π
6
)
=cos
(π
6
)
+jsin
(π
6
)
=
√
3
2
+
1
2
j